-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.py
33 lines (27 loc) · 1.13 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch
import torch.nn.functional as F
class Optimization():
def __init__(self, train_loader, device):
self.train_loader = train_loader
self.device = device
def cdw_feature_distance(self, old_model, old_classifier, new_model):
"""cosine distance weight (cdw): calculate feature distance of
the features of a batch of data by cosine distance.
"""
old_model=old_model.to(self.device)
old_classifier=old_classifier.to(self.device)
for data in self.train_loader:
inputs, _ = data
inputs=inputs.to(self.device)
with torch.no_grad():
old_out = old_classifier(old_model(inputs))
new_out = new_model(inputs)
distance = 1 - torch.cosine_similarity(old_out, new_out)
return torch.mean(distance)
def kd_generate_soft_label(self, model, data, regularization):
"""knowledge distillation (kd): generate soft labels.
"""
result = model(data)
if regularization:
result = F.normalize(result, dim=1, p=2)
return result