Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Data Infra for Training #124

Merged
merged 13 commits into from
Jun 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions .dockerignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
.git
.tox
**/.mypy_cache
**/.pytest_cache
**/__pycache__
**/*.wav
**/saved_models
**/basic-pitch/saved_models
12 changes: 6 additions & 6 deletions .github/workflows/tox.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,14 +30,14 @@ jobs:
python-version: ${{ matrix.py }}
- uses: actions/checkout@v3
- name: Install soundlibs Ubuntu
run: sudo apt-get update && sudo apt-get install --no-install-recommends -y --fix-missing pkg-config libsndfile1
if: matrix.os == 'Ubuntu'
run: sudo apt-get update && sudo apt-get install --no-install-recommends -y --fix-missing pkg-config libsndfile1 sox
if: matrix.os == 'ubuntu-latest'
- name: Install soundlibs MacOs
run: brew install libsndfile llvm libomp
if: matrix.os == 'MacOs'
run: brew install libsndfile llvm libomp sox
if: matrix.os == 'macos-latest-xlarge'
- name: Install soundlibs Windows
run: choco install libsndfile
if: matrix.os == 'Windows'
run: choco install libsndfile sox.portable
if: matrix.os == 'windows-latest'
- name: Upgrade pip
run: python -m pip install -U pip
- name: Install tox
Expand Down
3 changes: 2 additions & 1 deletion CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ We recommend first installing the following non-python dependencies:
- To install on Windows, run `choco install libsndfile` using [Chocolatey](https://chocolatey.org/)
- To install on Ubuntu, run `sudo apt-get update && sudo apt-get install --no-install-recommends -y --fix-missing pkg-config libsndfile1`
- [ffmpeg](https://ffmpeg.org/) is a complete, cross-platform solution to record, convert and stream audio in all `basic-pitch` supported formats
- [sox](https://sourceforge.net/projects/sox/) is a general purpose sound processing utility library used to process and transform training data used for training the `basic-pitch` model.

To compile a debug build of `basic-pitch` that allows using a debugger (like gdb or lldb), use the following command to build the package locally and install a symbolic link for debugging:
```shell
Expand Down Expand Up @@ -87,4 +88,4 @@ terms of the [LICENSE](https://github.com/spotify/basic-pitch/blob/main/LICENSE)

# Code of Conduct

Read our [Code of Conduct](CODE_OF_CONDUCT.md) for the project.
Read our [Code of Conduct](CODE_OF_CONDUCT.md) for the project.
19 changes: 19 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
FROM apache/beam_python3.10_sdk:2.51.0

RUN --mount=type=cache,target=/var/cache/apt \
apt-get update \
&& apt-get install --no-install-recommends -y --fix-missing \
sox \
libsndfile1 \
libsox-fmt-all \
ffmpeg \
libhdf5-dev \
&& rm -rf /var/lib/apt/lists/*

COPY . /basic-pitch
WORKDIR basic-pitch
RUN --mount=type=cache,target=/root/.cache \
pip3 install --upgrade pip && \
pip3 install --upgrade setuptools wheel && \
pip3 install -e '.[train]'

5 changes: 3 additions & 2 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
include *.txt tox.ini *.rst *.md LICENSE
include catalog-info.yaml
recursive-include tests *.py *.wav *.npz
recursive-include basic_pitch *.py
include Dockerfile .dockerignore
recursive-include tests *.py *.wav *.npz *.jams *.zip
recursive-include basic_pitch *.py *.md
recursive-include basic_pitch/saved_models *.index *.pb variables.data* *.mlmodel *.json *.onnx *.tflite *.bin
11 changes: 11 additions & 0 deletions basic_pitch/data/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# Data / Training
The code and scripts in this section deal with training basic pitch on your own. Scripts in the `datasets` folder allow one to download and process a selection of the datasets used to train the original model. Each of these download scripts has the following keyword arguments:
* **--source**: Source directory to download raw data to. It defaults to `$HOME/mir_datasets/{dataset_name}`
* **--destination**: Directory to write processed data to. It defaults to `$HOME/data/basic_pitch/{dataset_name}`.
* **--runner**: The method used to run the Beam Pipeline for processing the dataset. Options include `DirectRunner`, running directly in the code process running the pipeline, `PortableRunner`, which can be used to run the pipeline in a docker container locally, and `DataflowRunner`, which can be used to run the pipeline in a docker container on Dataflow.
* **--timestamped**: If passed, the dataset will be put into a timestamp directory instead of 'splits'.
* **--batch-size**: Number of examples per tfrecord when partitioning the dataset.
* **--sdk_container_image**: The Docker container image used to process the data if using `PortableRunner` or `DirectRunner` .
* **--job_endpoint**: the endpoint where the job is running. It defaults to `embed` which works for `PortableRunner`.

Additional arguments that work with Beam in general can be used as well, and will be passed along and used by the pipeline. If using `DataflowRunner`, you will be required to pass `--temp_location={Path to GCS Bucket}`, `--staging_location={Path to GCS Bucket}`, `--project={Name of GCS Project}` and `--region={GCS region}`.
Empty file added basic_pitch/data/__init__.py
Empty file.
89 changes: 89 additions & 0 deletions basic_pitch/data/commandline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
#!/usr/bin/env python
# encoding: utf-8
#
# Cos.pathyright 2024 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a cos.pathy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

from pathlib import Path
from typing import Optional


def add_default(parser: argparse.ArgumentParser, dataset_name: str = "") -> None:
default_source = str(Path.home() / "mir_datasets" / dataset_name)
default_destination = str(Path.home() / "data" / "basic_pitch" / dataset_name)
parser.add_argument(
"--source",
default=default_source,
type=str,
help=f"Source directory for mir data. Defaults to {default_source}",
)
parser.add_argument(
"--destination",
default=default_destination,
type=str,
help=f"Output directory to write results to. Defaults to {default_destination}",
)
parser.add_argument(
"--runner",
choices=["DataflowRunner", "DirectRunner", "PortableRunner"],
default="DirectRunner",
help="Whether to run the download and process locally or on GCP Dataflow",
)
parser.add_argument(
"--timestamped",
default=False,
action="store_true",
help="If passed, the dataset will be put into a timestamp directory instead of 'splits'",
)
parser.add_argument("--batch-size", default=5, type=int, help="Number of examples per tfrecord")
parser.add_argument(
"--sdk_container_image",
default="",
help="Container image to run dataset generation job with. \
Required due to non-python dependencies.",
)
parser.add_argument("--job_endpoint", default="embed", help="")


def resolve_destination(namespace: argparse.Namespace, time_created: int) -> str:
return os.path.join(namespace.destination, str(time_created) if namespace.timestamped else "splits")


def add_split(
parser: argparse.ArgumentParser,
train_percent: float = 0.8,
validation_percent: float = 0.1,
split_seed: Optional[int] = None,
) -> None:
parser.add_argument(
"--train-percent",
type=float,
default=train_percent,
help="Percentage of tracks to mark as train",
)
parser.add_argument(
"--validation-percent",
type=float,
default=validation_percent,
help="Percentage of tracks to mark as validation",
)
parser.add_argument(
"--split-seed",
type=int,
default=split_seed,
help="Seed for random number generator used in split generation",
)
Empty file.
187 changes: 187 additions & 0 deletions basic_pitch/data/datasets/guitarset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
#!/usr/bin/env python
# encoding: utf-8
#
# Copyright 2024 Spotify AB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import os
import random
import time

from typing import Any, List, Dict, Tuple, Optional

import apache_beam as beam
import mirdata

from basic_pitch.data import commandline, pipeline


class GuitarSetInvalidTracks(beam.DoFn):
def process(self, element: Tuple[str, str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> Any:
track_id, split = element
yield beam.pvalue.TaggedOutput(split, track_id)


class GuitarSetToTfExample(beam.DoFn):
DOWNLOAD_ATTRIBUTES = ["audio_mic_path", "jams_path"]

def __init__(self, source: str, download: bool) -> None:
self.source = source
self.download = download

def setup(self) -> None:
import apache_beam as beam
import mirdata

self.guitarset_remote = mirdata.initialize("guitarset", data_home=self.source)
self.filesystem = beam.io.filesystems.FileSystems() # TODO: replace with fsspec
if self.download:
self.guitarset_remote.download()

def process(self, element: List[str], *args: Tuple[Any, Any], **kwargs: Dict[str, Any]) -> List[Any]:
import tempfile

import mirdata
import numpy as np
import sox

from basic_pitch.constants import (
AUDIO_N_CHANNELS,
AUDIO_SAMPLE_RATE,
FREQ_BINS_CONTOURS,
FREQ_BINS_NOTES,
ANNOTATION_HOP,
N_FREQ_BINS_NOTES,
N_FREQ_BINS_CONTOURS,
)
from basic_pitch.data import tf_example_serialization

logging.info(f"Processing {element}")
batch = []

for track_id in element:
track_remote = self.guitarset_remote.track(track_id)
with tempfile.TemporaryDirectory() as local_tmp_dir:
guitarset_local = mirdata.initialize("guitarset", local_tmp_dir)
track_local = guitarset_local.track(track_id)

for attribute in self.DOWNLOAD_ATTRIBUTES:
source = getattr(track_remote, attribute)
destination = getattr(track_local, attribute)
os.makedirs(os.path.dirname(destination), exist_ok=True)
with self.filesystem.open(source) as s, open(destination, "wb") as d:
d.write(s.read())

local_wav_path = f"{track_local.audio_mic_path}_tmp.wav"

tfm = sox.Transformer()
tfm.rate(AUDIO_SAMPLE_RATE)
tfm.channels(AUDIO_N_CHANNELS)
tfm.build(track_local.audio_mic_path, local_wav_path)

duration = sox.file_info.duration(local_wav_path)
time_scale = np.arange(0, duration + ANNOTATION_HOP, ANNOTATION_HOP)
n_time_frames = len(time_scale)

note_indices, note_values = track_local.notes_all.to_sparse_index(
time_scale, "s", FREQ_BINS_NOTES, "hz"
)
onset_indices, onset_values = track_local.notes_all.to_sparse_index(
time_scale, "s", FREQ_BINS_NOTES, "hz", onsets_only=True
)
contour_indices, contour_values = track_local.multif0.to_sparse_index(
time_scale, "s", FREQ_BINS_CONTOURS, "hz"
)

batch.append(
tf_example_serialization.to_transcription_tfexample(
track_local.track_id,
"guitarset",
local_wav_path,
note_indices,
note_values,
onset_indices,
onset_values,
contour_indices,
contour_values,
(n_time_frames, N_FREQ_BINS_NOTES),
(n_time_frames, N_FREQ_BINS_CONTOURS),
)
)
return [batch]


def create_input_data(
train_percent: float, validation_percent: float, seed: Optional[int] = None
) -> List[Tuple[str, str]]:
assert train_percent + validation_percent < 1.0, "Don't over allocate the data!"

# Test percent is 1 - train - validation
validation_bound = train_percent
test_bound = validation_bound + validation_percent

if seed:
random.seed(seed)

def determine_split() -> str:
partition = random.uniform(0, 1)
if partition < validation_bound:
return "train"
if partition < test_bound:
return "validation"
return "test"

guitarset = mirdata.initialize("guitarset")

return [(track_id, determine_split()) for track_id in guitarset.track_ids]


def main(known_args: argparse.Namespace, pipeline_args: List[str]) -> None:
time_created = int(time.time())
destination = commandline.resolve_destination(known_args, time_created)
input_data = create_input_data(known_args.train_percent, known_args.validation_percent, known_args.split_seed)

pipeline_options = {
"runner": known_args.runner,
"job_name": f"guitarset-tfrecords-{time_created}",
"machine_type": "e2-standard-4",
"num_workers": 25,
"disk_size_gb": 128,
"experiments": ["use_runner_v2"],
"save_main_session": True,
"sdk_container_image": known_args.sdk_container_image,
"job_endpoint": known_args.job_endpoint,
"environment_type": "DOCKER",
"environment_config": known_args.sdk_container_image,
}
pipeline.run(
pipeline_options,
pipeline_args,
input_data,
GuitarSetToTfExample(known_args.source, download=True),
GuitarSetInvalidTracks(),
destination,
known_args.batch_size,
)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
commandline.add_default(parser, os.path.basename(os.path.splitext(__file__)[0]))
commandline.add_split(parser)
known_args, pipeline_args = parser.parse_known_args()

main(known_args, pipeline_args)
Loading
Loading