Java implementation of the Sparkey key value store
Java
Clone or download
Latest commit c067b1f May 18, 2018

README.md

This is the java version of sparkey. It's not a binding, but a full reimplementation. See Sparkey for more documentation on how it works.

Travis

Continuous integration with travis.

Build Status

Dependencies

  • Java 6 or higher
  • Maven

Building

mvn package

Changelog

See changelog.

Usage

Sparkey is meant to be used as a library embedded in other software.

To import it with maven, use this:

<dependency>
  <groupId>com.spotify.sparkey</groupId>
  <artifactId>sparkey</artifactId>
  <version>2.3.1</version>
</dependency>

To help get started, take a look at the API documentation or an example usage: SparkeyExample

License

Apache License, Version 2.0

Performance

This data is the direct output from running

mvn clean package install && (cd benchmark; mvn clean package)
scp benchmark/target/microbenchmarks.jar $TESTMACHINE:

and then running this on the test machine:

java -jar microbenchmarks.jar com.spotify.sparkey.system.*.*

on the same machine ((Intel(R) Xeon(R) CPU L5630 @ 2.13GHz)) as the performance benchmark for the sparkey c implementation, so the numbers should be somewhat comparable.

Benchmark                            (numElements) (type)   Mode   Samples         Mean   Mean error    Units
c.s.s.s.AppendBenchmark.testMedium             N/A   NONE  thrpt       100   560514.462    11164.792    ops/s
c.s.s.s.AppendBenchmark.testMedium             N/A SNAPPY  thrpt       100   287809.906     5216.655    ops/s
c.s.s.s.AppendBenchmark.testSmall              N/A   NONE  thrpt       100  2530425.989   106629.449    ops/s
c.s.s.s.AppendBenchmark.testSmall              N/A SNAPPY  thrpt       100  2909965.740   114540.700    ops/s

c.s.s.s.LookupBenchmark.test                  1000   NONE  thrpt       100  1583592.318    44701.721    ops/s
c.s.s.s.LookupBenchmark.test                  1000 SNAPPY  thrpt       100   401894.168     6929.453    ops/s
c.s.s.s.LookupBenchmark.test                 10000   NONE  thrpt       100  1505772.744    44702.055    ops/s
c.s.s.s.LookupBenchmark.test                 10000 SNAPPY  thrpt       100   417876.461     7232.855    ops/s
c.s.s.s.LookupBenchmark.test                100000   NONE  thrpt       100  1328646.838    35313.306    ops/s
c.s.s.s.LookupBenchmark.test                100000 SNAPPY  thrpt       100   422015.707     5738.393    ops/s
c.s.s.s.LookupBenchmark.test               1000000   NONE  thrpt       100  1132310.981    34490.731    ops/s
c.s.s.s.LookupBenchmark.test               1000000 SNAPPY  thrpt       100   387936.344     6120.736    ops/s
c.s.s.s.LookupBenchmark.test              10000000   NONE  thrpt       100   963257.371    15601.812    ops/s
c.s.s.s.LookupBenchmark.test              10000000 SNAPPY  thrpt       100   388512.642     1823.866    ops/s
c.s.s.s.LookupBenchmark.test             100000000   NONE  thrpt        80   764810.198    23815.241    ops/s
c.s.s.s.LookupBenchmark.test             100000000 SNAPPY  thrpt       100   367202.525     4695.112    ops/s

c.s.s.s.WriteHashBenchmark.test          100000000    N/A     ss       100       86.003        2.437        s
c.s.s.s.WriteHashBenchmark.test           10000000    N/A     ss       100        6.772        0.116        s
c.s.s.s.WriteHashBenchmark.test            1000000    N/A     ss       100        0.424        0.012        s
c.s.s.s.WriteHashBenchmark.test             100000    N/A     ss       100        0.046        0.000        s
c.s.s.s.WriteHashBenchmark.test              10000    N/A     ss       100        0.006        0.001        s
c.s.s.s.WriteHashBenchmark.test               1000    N/A     ss       100        0.008        0.001        s

Some notes on the results:

  • The AppendBenchmark is bottlenecking on disk write rather than CPU.
  • The lookup performance degrades somewhat as more elements are added. It is unclear exactly what causes this, but it is likely a combination of page cache misses, cpu cache misses and algorithmic complexity of the hash algorithm.
  • The writeHash performance appears to be mostly linear, the actual superlinear behaviour is possibly due to page cache misses and algorithmic complexity of the hash algorithm.