Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

InvalidArgumentError indices [in docvecs] #3

Closed
systats opened this issue Mar 6, 2019 · 1 comment
Closed

InvalidArgumentError indices [in docvecs] #3

systats opened this issue Mar 6, 2019 · 1 comment

Comments

@systats
Copy link

systats commented Mar 6, 2019

Hi again. I translated your model to keras (in R):

n_topics = 4
input_dim = 10000
n_doc = 11995

input_d <- keras::layer_input(shape = 1, dtype="int32")
input_w <- keras::layer_input(shape = 1, dtype="int32")
  
embed_d <- input_d %>% 
 keras::layer_embedding(
   input_dim = n_doc, 
   output_dim = n_topics, 
   input_length = 1, 
   activity_regularizer = keras::regularizer_l1(0.000002), 
   name="docvecs"
 ) %>% 
 layer_activation("relu") %>% 
 layer_reshape(c(n_topics, 1))

embed_w <- input_w %>% 
 keras::layer_embedding(
   input_dim = input_dim, 
   output_dim = n_topics, 
   input_length = 1, 
   activity_regularizer = keras::regularizer_l1(0.000000015), 
   name="wordvecs"
 ) %>% 
 layer_activation("relu") %>% 
 layer_reshape(c(n_topics, 1))

dot_prod <- keras::layer_dot(list(embed_d, embed_w), axes = 1, normalize = F) %>% 
 keras::layer_reshape(target_shape = 1)

output <- dot_prod %>% 
  layer_activation("sigmoid")

model <- keras::keras_model(inputs = list(input_d, input_w), outputs = output) %>% 
  keras::compile(
   loss = "binary_crossentropy",
   optimizer = "adam"
  )

With the following data input:

Observations: 2,706,666
Variables: 3
$ doc_id   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
$ token_id <int> 102, 2269, 113, 8360, 8746, 566, 496, 5930, 113, 119, 17, 2356, 803, …
$ outcome  <dbl> 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, …

$doc_id
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      1    2966    5990    5994    9014   11995 
$token_id
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
      1     493    2231    3248    5640   10000 
$outcome
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    0.0     0.0     0.5     0.5     1.0     1.0 

But I get an error and don't know exactly why -

model %>% 
 fit(
  x = list(sam$doc_id, sam$token_id), sam$outcome,
  batch_size = 100,
  epochs = 2,
  shuffle = TRUE
)

Error in py_call_impl(callable, dots$args, dots$keywords) : 
  InvalidArgumentError: indices[52,0] = 11995 is not in [0, 11995)
	 [[Node: docvecs_7/embedding_lookup = GatherV2[Taxis=DT_INT32, Tindices=DT_INT32, Tparams=DT_FLOAT, _class=["loc:@training_3/Adam/Assign_2"], _device="/job:localhost/replica:0/task:0/device:CPU:0"](docvecs_7/embeddings/read, _arg_input_17_0_0, training_3/Adam/gradients/docvecs_7/embedding_lookup_grad/concat/axis)]]

Do you know how to fix this?

Would be great! Thanks in Advance,
Simon

@systats
Copy link
Author

systats commented Mar 6, 2019

@systats systats closed this as completed Mar 6, 2019
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant