We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent df4890d commit 12fd0cdCopy full SHA for 12fd0cd
pione.tex
@@ -1845,7 +1845,7 @@ \section{Local connectedness}
1845
internal hom (Lemma \ref{lemma-internal-hom-finite-etale})
1846
it suffices to prove the following: Given $Y$ finite \'etale over $X$
1847
any morphism $s : U \to Y$ over $X$ extends to a morphism $t : X \to Y$
1848
-over $Y$. Let $A^{sh}$ be the strict henselization of $A$ and denote
+over $X$. Let $A^{sh}$ be the strict henselization of $A$ and denote
1849
$X^{sh} = \Spec(A^{sh})$, $U^{sh} = U \times_X X^{sh}$,
1850
$Y^{sh} = Y \times_X X^{sh}$. By the first paragraph and our assumption
1851
on $A$, we can extend the base change $s^{sh} : U^{sh} \to Y^{sh}$ of $s$ to
0 commit comments