We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 2b80c69 commit 59bae33Copy full SHA for 59bae33
CONTRIBUTORS
@@ -107,6 +107,7 @@ Jonas Ehrhard
107
Alexander Palen Ellis
108
Matthew Emerton
109
Aras Ergus
110
+Tim Evink
111
Andrew Fanoe
112
Maxim Fedorchuck
113
Hu Fei
topology.tex
@@ -4131,7 +4131,7 @@ \section{Spectral spaces}
4131
we see that $\bigcap (U_i \cap E)$ is nonempty by
4132
Lemma \ref{lemma-constructible-hausdorff-quasi-compact} and
4133
Lemma \ref{lemma-intersection-closed-in-quasi-compact}.
4134
-Since $X$ is a sober space and $\{U_i\}$ is a
+Since $\{U_i\}$ is a
4135
fundamental system of open neighbourhoods of $x$, we see that
4136
$\bigcap U_i$ is the set of generalizations of $x$. Thus
4137
$x$ is a specialization of a point of $E$.
0 commit comments