-
Notifications
You must be signed in to change notification settings - Fork 64
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fine tuning on seqcls task with deepspeed hit RuntimeError: a leaf Variable that requires grad is being used in an in-place operation. #9
Comments
Hi I'll work today on running a basic fine tuning example and looking at the memory footprint and get back to you! |
Thanks! |
Hi I'll get you a sample command in the next day or two, but this link here explains using deepspeed: https://huggingface.co/docs/transformers/main_classes/deepspeed#deployment-with-one-gpu You should be using the I think if you only have 1 GPU you're going to need to try ZeRO-offload ... this is explained in that link I provided. But I'll try to get this working on my own and let you know ... |
This is another good link: |
Over the next few days I'll try to get this working so we have a great working example of fine-tuning the model with 1 GPU ! |
Thank you, I will read up n try out also on my 1 GPU! |
I've gotten the code running and it uses 20GB of GPU memory and 50GB of RAM. So as long as the machine with your A100 has plenty of RAM this could work with 1 GPU. Set up environment:
DeepSpeed config: deepspeed_config.json
Command I ran in seqcls directory:
Please let me know if you can get this working! |
So to summarize it looks like you can run the sequence classification with 1 GPU and 40GB GPU memory (maybe even 20GB GPU memory) ... but I do think you are going to need something like 50GB of machine RAM to take advantage of the CPU offloading |
That's really great news! Thank you so much for your help! I will try out and let you know. This machine has plenty of RAM too. |
Hi J38, I am happy to share that I am able to complete the training following your instructions, without using --use_flash true. If I include --use_flash true, it will give me the following error. Still trying to troubleshoot what could be the cause. If you have any clue, do let me know. Thanks. (biomedlm) dro@dro-DGX-Station:~/guathwa/pubmedgpt/finetune/seqcls_tr_dro$ deepspeed --num_gpus 1 --num_nodes 1 run_seqcls_gpt.py --tokenizer_name stanford-crfm/pubmed_gpt_tokenizer --model_name_or_path /home/dro/guathwa/pubmedgpt/finetune/seqcls_tr_dro/stanford-crfm-pubmedgpt --train_file $datadir/train.csv --validation_file $datadir/dev.csv --test_file $datadir/test.csv --do_train --do_eval --do_predict --per_device_train_batch_size 1 --gradient_accumulation_steps 2 --learning_rate 2e-06 --warmup_ratio 0.5 --num_train_epochs 20 --max_seq_length 560 --logging_steps 100 --save_strategy no --evaluation_strategy no --output_dir tr-finetune-demo --overwrite_output_dir --fp16 --use_flash true --seed 1 --run_name tr-finetune-demo --deepspeed deepspeed_config.json |
By the way I wasn't seeing any performance gain using flash attention, not sure if it just doesn't help or a bug in my system ... this bug you're reporting is because I forgot to push the updated code that has the flash attention option ... will try to push that soon ! |
Okay I pushed the updated code! |
Saw the updated codes. I will close this issue. Thanks for the great help! |
is there any code that works? e.g. colab? thanks! |
Hi team,
I am trying to fine tune on a seqcls task (using the provided script) on my own dataset but was OOM on my gpu (DGX A100, 40Gb). So now I am trying to run it with deepspeed but encounter the following error.
Please advise. Thanks.
*I am a begineer in deep learning...
================
Try with deepspeed
deepspeed_config.json
{
"zero_optimization": {
"stage": 1,
"reduce_bucket_size": 5e8
},
"train_batch_size":"auto"
}
================
cd /home/dro/guathwa/pubmedgpt/finetune/seqcls_tr
export task=tr
export datadir=data/$task
export outdir=runs/$task/GPT2
export seed=100
export name=test2
export lr=4e-5
export OMP_NUM_THREADS=1
export WANDB_DISABLED=True
export train_batch_size=4
export max_seq_length=128
export grad_accum=4
(pubmedgpt) dro@dro-DGX-Station-A100:~/guathwa/pubmedgpt/finetune/seqcls_tr$ python -m torch.distributed.launch --nproc_per_node=1 --nnodes=1 --node_rank=0 run_seqcls_gpt_tr_v0.2_dro.py --model_name_or_path "stanford-crfm-pubmedgpt" --train_file $datadir/train5000.csv --validation_file $datadir/dev.csv --test_file $datadir/test.csv --do_train --do_eval --do_predict --per_device_train_batch_size $train_batch_size --learning_rate $lr --warmup_ratio 0.5 --num_train_epochs 1 --max_seq_length $max_seq_length --logging_steps 100 --save_strategy no --evaluation_strategy no --output_dir $outdir --overwrite_output_dir --fp16 --seed $seed --run_name $name --ddp_find_unused_parameters False --weight_decay 0.0 --deepspeed deepspeed_config.json
/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launch.py:178: FutureWarning: The module torch.distributed.launch is deprecated
and will be removed in future. Use torchrun.
Note that --use_env is set by default in torchrun.
If your script expects
--local_rank
argument to be set, pleasechange it to read from
os.environ['LOCAL_RANK']
instead. Seehttps://pytorch.org/docs/stable/distributed.html#launch-utility for
further instructions
warnings.warn(
Using the
WANDB_DISABLED
environment variable is deprecated and will be removed in v5. Use the --report_to flag to control the integrations used for logging result (for instance --report_to none).01/30/2023 17:11:23 - WARNING - main - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: True
01/30/2023 17:11:23 - INFO - main - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=False,
ddp_timeout=1800,
debug=[],
deepspeed=deepspeed_config.json,
disable_tqdm=False,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=True,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=4e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=runs/tr/GPT2/runs/Jan30_17-11-23_dro-DGX-Station-A100
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=100,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=1.0,
optim=adamw_hf,
output_dir=runs/tr/GPT2,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=4,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
resume_from_checkpoint=None,
run_name=test2,
save_on_each_node=False,
save_steps=500,
save_strategy=no,
save_total_limit=None,
seed=100,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.5,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
01/30/2023 17:11:23 - INFO - main - load a local file for train: data/tr/train5000.csv
01/30/2023 17:11:23 - INFO - main - load a local file for validation: data/tr/dev.csv
01/30/2023 17:11:23 - INFO - main - load a local file for test: data/tr/test.csv
01/30/2023 17:11:23 - WARNING - datasets.builder - Using custom data configuration default-b4448ac955faff7e
01/30/2023 17:11:23 - INFO - datasets.info - Loading Dataset Infos from /home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/datasets/packaged_modules/csv
01/30/2023 17:11:23 - INFO - datasets.builder - Overwrite dataset info from restored data version.
01/30/2023 17:11:23 - INFO - datasets.info - Loading Dataset info from /home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317
01/30/2023 17:11:23 - WARNING - datasets.builder - Found cached dataset csv (/home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317)
01/30/2023 17:11:23 - INFO - datasets.info - Loading Dataset info from /home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317
100%|█████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1399.35it/s]
label_list [0, 1, 2, 3]
[INFO|configuration_utils.py:652] 2023-01-30 17:11:23,271 >> loading configuration file stanford-crfm-pubmedgpt/config.json
[INFO|configuration_utils.py:706] 2023-01-30 17:11:23,272 >> Model config GPT2Config {
"_name_or_path": "stanford-crfm-pubmedgpt",
"activation_function": "gelu_new",
"architectures": [
"GPT2LMHeadModel"
],
"attn_pdrop": 0.1,
"bos_token_id": 28895,
"embd_pdrop": 0.1,
"eos_token_id": 28895,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2",
"3": "LABEL_3"
},
"initializer_range": 0.02,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2,
"LABEL_3": 3
},
"layer_norm_epsilon": 1e-05,
"model_type": "gpt2",
"n_ctx": 1024,
"n_embd": 2560,
"n_head": 20,
"n_inner": null,
"n_layer": 32,
"n_positions": 1024,
"reorder_and_upcast_attn": false,
"resid_pdrop": 0.1,
"scale_attn_by_inverse_layer_idx": true,
"scale_attn_weights": true,
"summary_activation": null,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": true,
"summary_type": "cls_index",
"summary_use_proj": true,
"task_specific_params": {
"text-generation": {
"do_sample": true,
"max_length": 50
}
},
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"use_cache": false,
"vocab_size": 28896
}
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file vocab.json
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file merges.txt
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1773] 2023-01-30 17:11:23,273 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2155] 2023-01-30 17:11:23,302 >> loading weights file stanford-crfm-pubmedgpt/pytorch_model.bin
[WARNING|modeling_utils.py:2598] 2023-01-30 17:11:42,278 >> Some weights of the model checkpoint at stanford-crfm-pubmedgpt were not used when initializing GPT2ForSequenceClassification: ['lm_head.weight']
[WARNING|modeling_utils.py:2610] 2023-01-30 17:11:42,279 >> Some weights of GPT2ForSequenceClassification were not initialized from the model checkpoint at stanford-crfm-pubmedgpt and are newly initialized: ['classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Adding [PAD] token to tokenizer and model word embeddings.
[INFO|tokenization_utils_base.py:898] 2023-01-30 17:11:42,597 >> Assigning [PAD] to the pad_token key of the tokenizer
01/30/2023 17:11:43 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317/cache-84075b8e214e8641.arrow
01/30/2023 17:11:43 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317/cache-f2c30d0b5792242f.arrow
01/30/2023 17:11:43 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /home/dro/.cache/huggingface/datasets/csv/default-b4448ac955faff7e/0.0.0/6b34fb8fcf56f7c8ba51dc895bfa2bfbe43546f190a60fcf74bb5e8afdcc2317/cache-a8ef74afd83d72ba.arrow
[INFO|trainer.py:557] 2023-01-30 17:11:43,480 >> Using cuda_amp half precision backend
[INFO|trainer.py:725] 2023-01-30 17:11:43,480 >> The following columns in the training set don't have a corresponding argument in
GPT2ForSequenceClassification.forward
and have been ignored: sentence. If sentence are not expected byGPT2ForSequenceClassification.forward
, you can safely ignore this message./home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set
no_deprecation_warning=True
to disable this warningwarnings.warn(
[2023-01-30 17:11:43,488] [INFO] [logging.py:68:log_dist] [Rank 0] DeepSpeed info: version=0.8.0, git-hash=unknown, git-branch=unknown
Traceback (most recent call last):
File "run_seqcls_gpt_tr_v0.1.py", line 638, in
main()
File "run_seqcls_gpt_tr_v0.1.py", line 563, in main
train_result = trainer.train(resume_from_checkpoint=checkpoint)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/transformers/trainer.py", line 1501, in train
return inner_training_loop(
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/transformers/trainer.py", line 1570, in _inner_training_loop
deepspeed_engine, optimizer, lr_scheduler = deepspeed_init(
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/transformers/deepspeed.py", line 344, in deepspeed_init
deepspeed_engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/init.py", line 125, in initialize
engine = DeepSpeedEngine(args=args,
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/runtime/engine.py", line 301, in init
self._configure_distributed_model(model)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/runtime/engine.py", line 1187, in _configure_distributed_model
self._broadcast_model()
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/runtime/engine.py", line 1102, in _broadcast_model
dist.broadcast(p,
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/comm/comm.py", line 127, in log_wrapper
return func(*args, **kwargs)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/comm/comm.py", line 232, in broadcast
return cdb.broadcast(tensor=tensor, src=src, group=group, async_op=async_op)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/deepspeed/comm/torch.py", line 70, in broadcast
return torch.distributed.broadcast(tensor=tensor,
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/distributed_c10d.py", line 1201, in broadcast
work.wait()
RuntimeError: a leaf Variable that requires grad is being used in an in-place operation.
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 48532) of binary: /home/dro/anaconda3/envs/pubmedgpt/bin/python
Traceback (most recent call last):
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launch.py", line 193, in
main()
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launch.py", line 189, in main
launch(args)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launch.py", line 174, in launch
run(args)
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/run.py", line 752, in run
elastic_launch(
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 131, in call
return launch_agent(self._config, self._entrypoint, list(args))
File "/home/dro/anaconda3/envs/pubmedgpt/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 245, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
run_seqcls_gpt_tr_v0.1.py FAILED
Failures:
<NO_OTHER_FAILURES>
Root Cause (first observed failure):
[0]:
time : 2023-01-30_17:11:47
host : ...
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 48532)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
The text was updated successfully, but these errors were encountered: