About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Beta distributed pseudorandom numbers.
To use in Observable,
beta = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/random-base-beta@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var beta = require( 'path/to/vendor/umd/random-base-beta/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-beta@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.beta;
})();
</script>
Returns a pseudorandom number drawn from a beta distribution with parameters alpha
(first shape parameter) and beta
(second shape parameter).
var r = beta( 2.0, 5.0 );
// returns <number>
If alpha <= 0
or beta <= 0
, the function returns NaN
.
var r = beta( 2.0, -2.0 );
// returns NaN
r = beta( -2.0, 2.0 );
// returns NaN
If alpha
or beta
is NaN
, the function returns NaN
.
var r = beta( NaN, 5.0 );
// returns NaN
r = beta( 2.0, NaN );
// returns NaN
Returns a pseudorandom number generator (PRNG) for generating pseudorandom numbers drawn from a beta distribution.
var rand = beta.factory();
var r = rand( 1.5, 1.5 );
// returns <number>
If provided alpha
and beta
, the returned generator returns random variates from the specified distribution.
// Draw from beta( 1.5, 1.5 ) distribution:
var rand = beta.factory( 1.5, 1.5 );
var r = rand();
// returns <number>
r = rand();
// returns <number>
If not provided alpha
and beta
, the returned generator requires that both parameters be provided at each invocation.
var rand = beta.factory();
var r = rand( 1.0, 1.0 );
// returns <number>
r = rand( 3.14, 2.25 );
// returns <number>
The function accepts the following options
:
- prng: pseudorandom number generator for generating uniformly distributed pseudorandom numbers on the interval
[0,1)
. If provided, the function ignores both thestate
andseed
options. In order to seed the returned pseudorandom number generator, one must seed the providedprng
(assuming the providedprng
is seedable). - seed: pseudorandom number generator seed.
- state: a
Uint32Array
containing pseudorandom number generator state. If provided, the function ignores theseed
option. - copy:
boolean
indicating whether to copy a provided pseudorandom number generator state. Setting this option tofalse
allows sharing state between two or more pseudorandom number generators. Setting this option totrue
ensures that a returned generator has exclusive control over its internal state. Default:true
.
To use a custom PRNG as the underlying source of uniformly distributed pseudorandom numbers, set the prng
option.
var minstd = require( '@stdlib/random-base-minstd' );
var rand = beta.factory({
'prng': minstd.normalized
});
var r = rand( 2.0, 4.0 );
// returns <number>
To seed a pseudorandom number generator, set the seed
option.
var rand1 = beta.factory({
'seed': 12345
});
var r1 = rand1( 2.0, 3.0 );
// returns <number>
var rand2 = beta.factory( 2.0, 3.0, {
'seed': 12345
});
var r2 = rand2();
// returns <number>
var bool = ( r1 === r2 );
// returns true
To return a generator having a specific initial state, set the generator state
option.
var rand;
var bool;
var r;
var i;
// Generate pseudorandom numbers, thus progressing the generator state:
for ( i = 0; i < 1000; i++ ) {
r = beta( 2.0, 4.0 );
}
// Create a new PRNG initialized to the current state of `beta`:
rand = beta.factory({
'state': beta.state
});
// Test that the generated pseudorandom numbers are the same:
bool = ( rand( 2.0, 4.0 ) === beta( 2.0, 4.0 ) );
// returns true
The generator name.
var str = beta.NAME;
// returns 'beta'
The underlying pseudorandom number generator.
var prng = beta.PRNG;
// returns <Function>
The value used to seed beta()
.
var rand;
var r;
var i;
// Generate pseudorandom values...
for ( i = 0; i < 100; i++ ) {
r = beta( 2.0, 2.0 );
}
// Generate the same pseudorandom values...
rand = beta.factory( 2.0, 2.0, {
'seed': beta.seed
});
for ( i = 0; i < 100; i++ ) {
r = rand();
}
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = beta.factory({
'prng': Math.random
});
var seed = rand.seed;
// returns null
Length of generator seed.
var len = beta.seedLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = beta.factory({
'prng': Math.random
});
var len = rand.seedLength;
// returns null
Writable property for getting and setting the generator state.
var r = beta( 2.0, 5.0 );
// returns <number>
r = beta( 2.0, 5.0 );
// returns <number>
// ...
// Get a copy of the current state:
var state = beta.state;
// returns <Uint32Array>
r = beta( 2.0, 5.0 );
// returns <number>
r = beta( 2.0, 5.0 );
// returns <number>
// Reset the state:
beta.state = state;
// Replay the last two pseudorandom numbers:
r = beta( 2.0, 5.0 );
// returns <number>
r = beta( 2.0, 5.0 );
// returns <number>
// ...
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = beta.factory({
'prng': Math.random
});
var state = rand.state;
// returns null
Length of generator state.
var len = beta.stateLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = beta.factory({
'prng': Math.random
});
var len = rand.stateLength;
// returns null
Size (in bytes) of generator state.
var sz = beta.byteLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = beta.factory({
'prng': Math.random
});
var sz = rand.byteLength;
// returns null
Serializes the pseudorandom number generator as a JSON object.
var o = beta.toJSON();
// returns { 'type': 'PRNG', 'name': '...', 'state': {...}, 'params': [] }
If provided a PRNG for uniformly distributed numbers, this method returns null
.
var rand = beta.factory({
'prng': Math.random
});
var o = rand.toJSON();
// returns null
- If PRNG state is "shared" (meaning a state array was provided during PRNG creation and not copied) and one sets the generator state to a state array having a different length, the PRNG does not update the existing shared state and, instead, points to the newly provided state array. In order to synchronize PRNG output according to the new shared state array, the state array for each relevant PRNG must be explicitly set.
- If PRNG state is "shared" and one sets the generator state to a state array of the same length, the PRNG state is updated (along with the state of all other PRNGs sharing the PRNG's state array).
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-beta@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var seed;
var rand;
var i;
// Generate pseudorandom numbers...
for ( i = 0; i < 100; i++ ) {
console.log( beta( 2.0, 2.0 ) );
}
// Create a new pseudorandom number generator...
seed = 1234;
rand = beta.factory( 6.0, 2.0, {
'seed': seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
// Create another pseudorandom number generator using a previous seed...
rand = beta.factory( 2.0, 2.0, {
'seed': beta.seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
})();
</script>
</body>
</html>
- Ahrens, J.H., and U. Dieter. 1974. "Computer methods for sampling from gamma, beta, poisson and bionomial distributions." Computing 12 (3): 223–46. doi:10.1007/BF02293108.
- Jöhnk, M.D. 1964. "Erzeugung von Betaverteilten Und Gammaverteilten Zufallszahlen." Metrika 8: 5–15. <http://eudml.org/doc/175224>.
@stdlib/random-array/beta
: create an array containing pseudorandom numbers drawn from a beta distribution.@stdlib/random-iter/beta
: create an iterator for generating pseudorandom numbers drawn from a beta distribution.@stdlib/random-streams/beta
: create a readable stream for generating pseudorandom numbers drawn from a beta distribution.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.