About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Normal distribution differential entropy.
The differential entropy (in nats) for a normal random variable with mean μ
and standard deviation σ > 0
is
To use in Observable,
entropy = require( 'https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-normal-entropy@umd/browser.js' )
To vendor stdlib functionality and avoid installing dependency trees for Node.js, you can use the UMD server build:
var entropy = require( 'path/to/vendor/umd/stats-base-dists-normal-entropy/index.js' )
To include the bundle in a webpage,
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-normal-entropy@umd/browser.js"></script>
If no recognized module system is present, access bundle contents via the global scope:
<script type="text/javascript">
(function () {
window.entropy;
})();
</script>
Returns the differential entropy for a normal distribution with mean mu
and standard deviation sigma
(in nats).
var y = entropy( 2.0, 1.0 );
// returns ~1.419
y = entropy( -1.0, 4.0 );
// returns ~2.805
If provided NaN
as any argument, the function returns NaN
.
var y = entropy( NaN, 1.0 );
// returns NaN
y = entropy( 0.0, NaN );
// returns NaN
If provided sigma <= 0
, the function returns NaN
.
var y = entropy( 0.0, 0.0 );
// returns NaN
y = entropy( 0.0, -1.0 );
// returns NaN
<!DOCTYPE html>
<html lang="en">
<body>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/random-base-randu@umd/browser.js"></script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/gh/stdlib-js/stats-base-dists-normal-entropy@umd/browser.js"></script>
<script type="text/javascript">
(function () {
var sigma;
var mu;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
mu = ( randu()*10.0 ) - 5.0;
sigma = randu() * 20.0;
y = entropy( mu, sigma );
console.log( 'µ: %d, σ: %d, h(X;µ,σ): %d', mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
})();
</script>
</body>
</html>
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.