Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

model-trainer-huggingface: llama2 7b isn't working #21

Closed
samos123 opened this issue Aug 3, 2023 · 2 comments · Fixed by #22
Closed

model-trainer-huggingface: llama2 7b isn't working #21

samos123 opened this issue Aug 3, 2023 · 2 comments · Fixed by #22

Comments

@samos123
Copy link
Contributor

samos123 commented Aug 3, 2023

ValueError                                Traceback (most recent call last)                                                    
Cell In[6], line 15                                                                                                            
     12 model = prepare_model_for_kbit_training(model)                                                                         
     14 # add LoRA adaptor                                                                                                     
---> 15 model = get_peft_model(model, lora_config2)                                                                            
     16 model.print_trainable_parameters()                                                                                     
                                                                                                                               
File /usr/local/lib/python3.10/dist-packages/peft/mapping.py:98, in get_peft_model(model, peft_config, adapter_name)
     96 if isinstance(peft_config, PromptLearningConfig):                                                                      
     97     peft_config = _prepare_prompt_learning_config(peft_config, model_config)                                           
---> 98 return MODEL_TYPE_TO_PEFT_MODEL_MAPPING[peft_config.task_type](model, peft_config, adapter_name=adapter_name)
                                                                                                                               
File /usr/local/lib/python3.10/dist-packages/peft/peft_model.py:918, in PeftModelForCausalLM.__init__(self, model, peft_config,
 adapter_name)
    917 def __init__(self, model, peft_config: PeftConfig, adapter_name="default"):
--> 918     super().__init__(model, peft_config, adapter_name)
    919     self.base_model_prepare_inputs_for_generation = self.base_model.prepare_inputs_for_generation

File /usr/local/lib/python3.10/dist-packages/peft/peft_model.py:112, in PeftModel.__init__(self, model, peft_config, adapter_na
me)
    110 if not isinstance(peft_config, PromptLearningConfig):
    111     self.peft_config[adapter_name] = peft_config
--> 112     self.base_model = PEFT_TYPE_TO_MODEL_MAPPING[peft_config.peft_type](
    113         self.base_model, self.peft_config, adapter_name
    114     )
    115     self.set_additional_trainable_modules(peft_config, adapter_name)


File /usr/local/lib/python3.10/dist-packages/peft/tuners/lora.py:181, in LoraModel.__init__(self, model, config, adapter_name)
    179 self.forward = self.model.forward
    180 self.peft_config = config
--> 181 self.add_adapter(adapter_name, self.peft_config[adapter_name])
    183 # transformers models have a .config attribute, whose presence is assumed later on
    184 if not hasattr(self, "config"):

File /usr/local/lib/python3.10/dist-packages/peft/tuners/lora.py:195, in LoraModel.add_adapter(self, adapter_name, config)
    193     config = self._prepare_lora_config(config, model_config)
    194     self.peft_config[adapter_name] = config
--> 195 self._find_and_replace(adapter_name)
    196 if len(self.peft_config) > 1 and self.peft_config[adapter_name].bias != "none":
    197     raise ValueError(
    198         "LoraModel supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters."
    199     )

File /usr/local/lib/python3.10/dist-packages/peft/tuners/lora.py:357, in LoraModel._find_and_replace(self, adapter_name)
    354         self._replace_module(parent, target_name, new_module, target)
    356 if not is_target_modules_in_base_model:
--> 357     raise ValueError(
    358         f"Target modules {lora_config.target_modules} not found in the base model. "
    359         f"Please check the target modules and try again."
    360     )

ValueError: Target modules ['query_key_value'] not found in the base model. Please check the target modules and try again
@samos123
Copy link
Contributor Author

samos123 commented Aug 3, 2023

Seem each Model will have different target modules, so need to come up with a way to detect the target modules automatically.

Reference: https://stackoverflow.com/questions/76736361/llama-qlora-error-target-modules-query-key-value-dense-dense-h-to-4h

@samos123
Copy link
Contributor Author

samos123 commented Aug 3, 2023

Edit: a better approach would be to let peft automatically detect it: huggingface/peft#758 (comment)

Fallback if auto detection doesn't work:

Looks like by parsing config.json we should be able to dynamically detect the correct target modules: https://huggingface.co/meta-llama/Llama-2-7b-hf/blob/main/pytorch_model.bin.index.json

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant