This project implements a neural network class without using any ML library.
.
|-- ANN/
| |-- Layer.py
| |-- Dense.py
| |-- Network.py
| |-- Activation.py
| |-- Activation_functions/
| |-- Tanh.py
| |-- Loss_functions/
| |-- MSE.py
|-- mnist_digits.py
-
ANN/
: Directory for your neural network classes.-
Layer.py
: Implementation of the BaseLayer
class. -
Dense.py
: Implementation of theDense
class. -
Network.py
: Implementation of theNetwork
class. -
Activation.py
: Implementation of theActivation
class. -
Activation_functions/
: Contains activation function implementations.Tanh.py
: Implementation of the hyperbolic tangent activation function.
-
Loss_functions/
: Contains loss function implementations.MSE.py
: Implementation of the Mean Squared Error loss function.
-
-
mnist_digits.py
: Main script or application where you use the neural network.
-
Clone the repository:
git clone https://github.com/sudarshanmg/ANN.git
-
Install dependencies:
pip install -r requirements.txt
-
Run the MNIST digits script:
python mnist_digits.py
- Modify and run
mnist_digits.py
to experiment with the neural network on the MNIST dataset.
Head to the Tutorial Section.
Feel free to contribute to the development of this project. Create an issue or submit a pull request.
This project is licensed under the MIT License.