Primes are of the utmost importance to number theorists because they are the building blocks of whole numbers, and important to the world because their odd mathematical properties make them perfect for our current uses. On that matter we've built a library to create and find prime numbers
- Basic prime number generators
- Primes' indexes
- High performance
- Some special prime arrays
- Relations with normal integers
You can play with the functions on prime-functions.truncgil.com
npm install prime-functions
const pr = require('prime-functions');
console.log(pr.isPrime(13)); //true
You can simply use the prime-functions
on the client side:
<script src="https://cdn.jsdelivr.net/npm/prime-functions/index.min.js"></script>
<script>
const pr = primeFunctions;
console.log(pr.isPrime(13)); //true
</script>
- Main Functions
- isPrime
- nthPrime
- indexOfPrime
- nthPrimesSum
- nthPrimesTimes
- nextPrime
- prevPrime
- primeSmallerThan
- primeBiggerThan
- primeDivisors
- primeDivisorsSum
- primeDivisorsTimes
- isPrimeOrDivisors
- primesSmallerThan
- closestPrime
- randomPrime
- whatWillThisPrimeBe
- nextNPrimes
- prevNPrimes
- primesBetween
- firstNPrimes
- isEmirp
- nthEmirp
- hasTwinPrime
- isTruncatable
- truncatableValues
- nthTruncatablePrime
- isPandigitalPrime
- Theoretical Functions
- Helper Functions
Return if a number is Prime Number
let result = pr.isPrime(13); // true
let result = pr.isPrime(28); // false
Get nth prime
let result = pr.nthPrime(5); // 11
Get index of prime number
let result = pr.indexOfPrime(13); // 5
Index starts from 0
let result = pr.nthPrimesSum(3,5,7); // 5 + 11 + 17 = 33
let result = pr.nthPrimesTimes(3,5,7); // 5 * 11 * 17 = 935
let result = pr.nextPrime(17); // 19
let result = pr.prevPrime(17); // 13
let result = pr.primeSmallerThan(100); // 97
let result = pr.primeBiggerThan(100); // 101
let result = pr.primeDivisors(42); // [2,3,7]
let result = pr.primeDivisorsSum(42); // 2 + 3 + 7 = 12
let result = pr.primeDivisorsTimes(42); // 2 * 3 * 7 = 42
Checks if a prime is a Mersenne Prime
let result = pr.isMersennePrime(127); // true
Get nth Mersenne Prime
let result = pr.nthMersennePrime(5); // 8191
Get nth Mersenne Prime's exponents
let result = pr.nthMersennePrimeExponents(5); // 13 - That means 2^13
If the number is prime it returns true, otherwise it returns prime divisors
let result = pr.primesSmallerThan(25); // [ 2, 3, 5, 7, 11, 13, 17, 19, 23 ]
let result = pr.closestPrime(25); // 23
let result = pr.randomPrime(25, 48); // 31
let result = pr.whatWillThisPrimeBe(23); // It'll strengthen you
let result = pr.nextNPrimes(25, 5); // [ 29, 31, 37, 41, 43 ]
let result = pr.prevNPrimes(25, 5); // [ 23, 19, 17, 13, 11 ]
let result = pr.primesBetween(80, 150); // [ 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149 ]
let result = pr.firstNPrimes(7); // [ 2, 3, 5, 7, 11, 13, 17 ]
helper function
let result = pr.digits(1554); // 4
helper function
let result = pr.sum([2,3,4]); // 9
helper function
let result = pr.times([2,3,4]); // 24
helper function
let result = pr.remainDividedBy(8,3); // 2
helper function That should be bottom of the script
pr.printExecutionTime(); // Execution time: 119ms
helper function
pr.beautifyInteger(123123123); // 123.123.123
helper function
pr.reverseNumber(123456); // 654321
helper function
pr.integerToText(1234567890); // bcdefghija
helper function
pr.integerToString(1234567890); // '1234567890'
helper function
pr.integerToArray(1234567890); // ['1', '2', '3', '4', '5', '6', '7', '8', '9', '0']
helper function
Returns number first n digits
pr.firstNDigits(1234567890, 4); // 1234
helper function
Returns number last n digits
pr.lastNDigits(1234567890, 4); // 7890
returns if the given number is emirp.
pr.isEmirp(13); // true
pr.isEmirp(31); // true
pr.isEmirp(19); // false
returns nth emirp. 1 is the 11
pr.nthEmirp(2); // 13
pr.nthEmirp(5); // 37
check if the prime has a twin
pr.hasTwinPrime(3); // 5
pr.hasTwinPrime(5); // [5, 7]
pr.hasTwinPrime(311); // 313
pr.hasTwinPrime(3, false); // True
pr.hasTwinPrime(37); // false
helper
pr.factorial(3); // 6
pr.factorial(pr.factorial(3)); // 720
The Wilson's Theorem.
n+1 should be prime number if and only if n! mod(n+1) = n.
returnWithExplanation is the conditions and explanation of Wilson's Theorem.
pr.wilsonsTheorem(6);
/*
{
formula: 'FORMULA: f(n) = ( 6! mod(6+1) / n ) * ( 6+1 ) + 2 --- CONDITIONS: if 6+1 is prime if and only if 6! mod(6+1) = 6 ',
result: 7
}
*/
pr.wilsonsTheorem(6, false); // 7
Euler's phi and also known as totient function.
Function can be used as both phi and totient
pr.totient(1) // 1
pr.phi(2) // 1
pr.phi(3) // 2
pr.phi(4) // 2
pr.totient(5) // 4
pr.phi(6) // 2
pr.phi(7) // 6
pr.totient(8) // 4
pr.phi(9) // 6
pr.phi(10) // 4
Check if the given number is Truncatable Prime
pr.isTruncatable(3797); //true
pr.isTruncatable(373); //true
pr.isTruncatable(23); //false
Returns number's Truncatable values
pr.truncatableValues(3797);
/*
{
leftToRight: [ 3, 37, 379, 3797 ],
rightToLeft: [ 7, 97, 797, 3797 ]
}
*/
Finds the nth Truncatable Prime
pr.nthTruncatablePrime(10); // 3797
Checks if the given number is Pandigital Prime
pr.isPandigitalPrime(2143); // true