Code for our paper "SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation": https://arxiv.org/pdf/2001.07645v3.pdf. (MICCAI 2020)
The library dependencies can be downloaded by running
pip3 install -r requirements.txt
.
To run the code, you can follow the steps below:
- Register on https://acdc.creatis.insa-lyon.fr/#challenges and download the ACDC - Segmentation dataset.
- Assign the root directory of the dataset to the DATA_ROOT variable at the bottom of train.py. Alternatively, you can fill the flag -data-root to the root directory each time you run the code.
- Run train.py using command python3 train.py
@misc{sun2020saunet,
title={SAUNet: Shape Attentive U-Net for Interpretable Medical Image Segmentation},
author={Jesse Sun and Fatemeh Darbehani and Mark Zaidi and Bo Wang},
year={2020},
eprint={2001.07645},
archivePrefix={arXiv},
primaryClass={eess.IV}
}