Skip to content

suwangcompling/seq2seq-tutorials

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

seq2seq-tutorials

A. Building seq2seq models with Tensorflow (v1.0.0)

  • seq2seq-tutorial01: basic architecture setup.
  • seq2seq-tutorial02: Sutskever et al. (2014).
  • seq2seq-tutorial03: Bahdanau et al. (2015).
  • Enc-Dec-for-sorting-strings: Bahdanau et al. (2015).
  • Ptr-Net-for-sorting-strings: Vinyals et al. (2016).
  • Ptr-Net-for-sorting-sentences: Gong et al. (2016)

B. Building seq2seq models with PyTorch (v0.3.1)

  • PyTorch-seq2seq-full-tutorial: Prakash et al. (2016), with toy data.
    • Bidirectional
    • Stacking
    • Residual links
    • Attention (Bahdanau or Luong)
  • PyTorch-seq2seq-mscoco* (data = MSCOCO): Prakash et al. (2016)
    • Base: greedy search.
    • -beam: beam search.
  • PyTorch-seq2seq-transformer: Vaswani et al. (2017)

NB: the PyTorch code uses a few helpers, which are stored in utils.py and seq2seq_data_loader.py NB: to download the data used in the demos, go to https://github.com/iamaaditya/neural-paraphrase-generation/tree/dev/data, create a dir "mscoco/", and put the following files under it: train_source.txt, train_target.txt, test_source.txt, test_target.txt.

About

Building seq2seq models with Tensorflow/PyTorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages