Skip to content

Prompt-and-Rerank: A Method for Zero-Shot and Few-Shot Textual Style Transfer

License

Notifications You must be signed in to change notification settings

suzgunmirac/prompt-and-rerank

Repository files navigation

Prompt-and-Rerank

A Method for Zero-Shot and Few-Shot Arbitrary Textual Style Transfer with Small Language Models

— Authors: Mirac Suzgun, Luke Melas-Kyriazi, Dan Jurafsky

The following is an illustration of our proposed Prompt-and-Rerank method. Given an input text and the style transformation, we first compose a prompt and feed it to a pretrained language model (e.g., GPT-2) to generate multiple output texts—conditioned on the prompt—using beam search. We then re-score each candidate output along three axes, namely textual similarity, style transfer strength, and fluency. We choose the candidate with the highest re-ranked score as our output.

Prompt-and-Rerank

todo:

  • Upload the classifier models to Google Drive.
  • Provide example commands for running inference code and evaluating the results.
  • Upload the results.

Running Inference

The following command uses GPT-2 Large to change the sentiment of Yelp restaurant review sentences from positive to negative and vice versa using the contrastive prompting method. It also uses curly brackets as delimiters (sentence boundary markers) and four prompt examplars, generates three outputs using beam search, and saves the results under the outputs/yelp_clean/contrastive/gpt2_large/4_shot_3_samples directory.

python run_inference.py \
    --model gpt2-large \
    --dataset yelp --clean_data \
    --delimiter curly_bracket --setting contrastive \
    --k_samples 3 --num_examplars 4 \
    --results_dir outputs/yelp_clean/contrastive/gpt2_large/4_shot_3_samples

Evaluating Results

python calculate_all.py \
    --dataset yelp_clean \
    --output_dir outputs/yelp_clean/contrastive/gptj_6B/4_shot_3_samples \
    --choose_first \
    --results_save_path results/test.tsv

About

Prompt-and-Rerank: A Method for Zero-Shot and Few-Shot Textual Style Transfer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages