Skip to content

swiftzhang125/PRISE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PRISE: Demystifying Deep Lucas-Kanade with Strongly Star-Convex Constraints for Multimodel Image Alignment

Demo code for our proposed PRISE on GoogleMap, GoogleEarth, and MSCOCO datasets.

Introduction

We proposed PRISE to enforce the neural network to approximately learn a star-convex loss landscape around the ground truth given data to facilitate the convergence of the Deep Lucas-Kanade method to the ground truth through the high dimensional space defined by the network.

Compared with DeepLK

Requirements

Create a new anaconda environment and install all required packages before runing the code.

conda create --name prise
conda activate prise
pip install requirements.txt

Dataset

You can follow the dataset preparation here.

Please note that changing the data path if necessary.

./src/ # modfiy the data_read.py

Usage

To train a model to estimate the homography:

  • Step1: Finding a good initialization for the homography estimation
  • Step2: Train the PRISE model
cd src
sh create_checkpoints.py # step1
sh run.sh # step2

To see the training loss and test reuslts under:

cd ./results/<dataset_name>/mu<mu>_rho<rho>_l<lambda_loss>_nsample<sample_noise>/trainig/

Performance

Evaluation results on MSCOCO dataset.

Method PE < 0.1 PE < 0.5 PE < 1 PE < 3 PE < 5 PE < 10 PE < 20
SIFT + RANSAC 0.00 4.70 68.32 84.21 90.32 95.26 96.55
SIFT + MAGSAC 0.00 3.66 76.27 93.26 94.22 95.32 97.26
LF-Net 5.60 8.62 14.20 23.00 78.88 90.18 95.45
LocalTrans 38.24 87.25 96.45 98.00 98.72 99.25 100.00
DHM 0.00 0.00 0.87 3.48 15.27 98.22 99.96
MHN 0.00 4.58 81.99 95.67 96.02 98.45 98.70
CLKN 35.24 83.25 83.27 94.26 95.75 97.52 98.46
DeepLK 17.16 72.25 92.81 96.76 97.67 98.92 99.03
PRISE 52.77 83.27 97.29 98.44 98.76 99.31 99.33

Evaluation results on GoogleEarth dataset.

Method PE < 0.1 PE < 0.5 PE < 1 PE < 3 PE < 5 PE < 10 PE < 20
SIFT + RANSAC 0.18 3.42 8.97 23.09 41.32 50.36 59.88
SIFT + MAGSAC 0.00 0.00 1.88 2.70 3.25 10.03 45.29
DHM 0.00 0.02 1.46 2.65 5.57 25.54 90.32
MHN 0.00 3.42 4.56 5.02 8.99 59.90 93.77
CLKN 0.27 2.88 3.45 4.24 4.32 8.77 75.00
DeepLK 0.00 3.50 12.01 70.20 84.45 90.57 95.52
PRISE 0.24 25.44 53.00 82.69 87.16 90.69 96.70

Evaluation results on GoogleMap dataset.

Method PE < 0.1 PE < 0.5 PE < 1 PE < 3 PE < 5 PE < 10 PE < 20
SIFT + RANSAC 0.00 0.00 0.00 0.00 0.00 2.74 3.44
SIFT + MAGSAC 0.00 0.00 0.00 0.00 0.00 0.15 2.58
DHM 0.00 0.00 0.00 1.20 3.43 6.99 78.89
MHN 0.00 0.34 0.45 0.50 3.50 35.69 93.77
CLKN 0.00 0.00 0.00 1.57 1.88 8.67 22.45
DeepLK 0.00 2.25 16.80 61.33 73.39 83.20 93.80
PRISE 17.47 48.13 56.93 76.21 80.04 86.13 94.02

Advanced

Pretrain models can be found:

GoogleEarth https://www.dropbox.com/s/818pq5sabzbm8or/GE.zip?dl=0
GoogleMap   https://www.dropbox.com/s/6ltqnm4vm91s4hs/GM.zip?dl=0
MSCOCO      https://www.dropbox.com/s/4p4k5o3r4zn7yys/MSCOCO.zip?dl=0

To change the hyperparameters:

cd ./src/ # and modify the settings.py

If you are looking for Pytorch implementation of our Star-Convex Constraints

cd ./py-sc/

Publication

Please cite our papers if you use our idea or code:

@inproceedings{zhang2023prise,
  title={PRISE: Demystifying Deep Lucas-Kanade with Strongly Star-Convex Constraints for Multimodel Image Alignment},
  author={Zhang, Yiqing and Huang, Xinming and Zhang, Ziming},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2023}
}

Releases

No releases published

Packages

No packages published