Skip to content

sx123sx/Graph-Neural-ODE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 

Repository files navigation

图神经常微分方程综述

  本文根据静态图、离散动态图和连续动态图等 不同类型图的特点,将相关工作分为静态图神经 ODE、 离散动态图神经 ODE 以及连续动态图神经 ODE. 根 据 ODE 所发挥的不同作用,将连续动态图神经 ODE 分为作为编码器和作为推断器 2 类 . 根据图神 经 ODE 的阶数将静态图神经 ODE 分为一阶静态图神 经 ODE 和二阶静态图神经 ODE. 此外,根据适用的 场景不同,将离散动态图神经 ODE 分为时空图神经 ODE 和多智能体神经 ODE. 本文提出的图神经 ODE 方法分类体系如下图所示.
Image

静态图神经ODE

  1. Xhonneux L P, Qu M, Tang J. Continuous graph neural networks[C]//International conference on machine learning. PMLR, 2020: 10432-10441.论文 代码
  2. Poli M, Massaroli S, Park J, et al. Graph neural ordinary differential equations[J]. arXiv preprint arXiv:1911.07532, 2019. 论文 代码
  3. Zhang Y, Gao S, Pei J, et al. Improving social network embedding via new second-order continuous graph neural networks[C]//Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. 2022: 2515-2523. 论文
  4. Rusch T K, Chamberlain B, Rowbottom J, et al. Graph-coupled oscillator networks[C]//International Conference on Machine Learning. PMLR, 2022: 18888-18909. 论文 代码
  5. Hwang J, Choi J, Choi H, et al. Climate modeling with neural diffusion equations[C]//2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021: 230-239. 论文 代码

离散动态图神经ODE

  1. Zang C, Wang F. Neural dynamics on complex networks[C]//Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020: 892-902.论文 代码
  2. Fang Z, Long Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 364-373. 论文 代码
  3. Jin M, Zheng Y, Li Y F, et al. Multivariate time series forecasting with dynamic graph neural odes[J]. IEEE Transactions on Knowledge and Data Engineering, 2022. 论文 代码
  4. Chen Y, Qin Y, Li K, et al. Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction[J]. IEEE Transactions on Vehicular Technology, 2023. 论文
  5. Huang Z, Sun Y, Wang W. Coupled graph ode for learning interacting system dynamics[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 705-715. 论文
  6. Luo X, Yuan J, Huang Z, et al. Hope: High-order graph ode for modeling interacting dynamics[C]//International Conference on Machine Learning. PMLR, 2023: 23124-23139. 论文
  7. Hou J, Guo X, Liu J, et al. Structure-Enhanced Graph Neural ODE Network for Temporal Link Prediction[C]//International Conference on Artificial Neural Networks. Cham: Springer Nature Switzerland, 2023: 563-575. 代码
  8. Guo J, Zhang P, Li C, et al. Evolutionary preference learning via graph nested gru ode for session-based recommendation[C]//Proceedings of the 31st ACM international conference on information & knowledge management. 2022: 624-634. 论文

连续动态图神经ODE

连续动态图ODE作为编码器

  1. Wang Z, Yang P, Fan X, et al. Contig: Continuous representation learning on temporal interaction graphs[J]. Neural Networks, 2024, 172: 106151. 论文
  2. Jin M, Li Y F, Pan S. Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs[J]. Advances in Neural Information Processing Systems, 2022, 35: 19874-19886. 论文
  3. Qin Y, Ju W, Wu H, et al. Learning graph ODE for continuous-time sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024.论文
  4. Poli M, Massaroli S, Park J, et al. Graph neural ordinary differential equations[J]. arXiv preprint arXiv:1911.07532, 2019. 论文 代码

连续动态图ODE作为推断器

  1. Huang Z, Sun Y, Wang W. Learning continuous system dynamics from irregularly-sampled partial observations[J]. Advances in Neural Information Processing Systems, 2020, 33: 16177-16187. 论文
  2. Huang Z, Zhao W, Gao J, et al. TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems[J]. arXiv preprint arXiv:2310.06427, 2023. 论文
  3. Jiang S, Huang Z, Luo X, et al. Cf-gode: Continuous-time causal inference for multi-agent dynamical systems[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 997-1009.论文
  4. Huang Z, Sun Y, Wang W. Generalizing graph ode for learning complex system dynamics across environments[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 798-809. 论文
  5. Liu Y, Cheng J, Zhao H, et al. Physics-Inspired Neural Graph ODE for Long-term Dynamical Simulation[J]. arXiv preprint arXiv:2308.13212, 2023.论文

连续动态图ODE作为编码器和推断器同时应用

  1. Gao Z, Wang H, Wang Y B, et al. Probabilistic continuous-time whole-graph forecasting[J]. 2022.论文

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published