本文根据静态图、离散动态图和连续动态图等
不同类型图的特点,将相关工作分为静态图神经 ODE、
离散动态图神经 ODE 以及连续动态图神经 ODE. 根
据 ODE 所发挥的不同作用,将连续动态图神经 ODE
分为作为编码器和作为推断器 2 类 . 根据图神 经
ODE 的阶数将静态图神经 ODE 分为一阶静态图神
经 ODE 和二阶静态图神经 ODE. 此外,根据适用的
场景不同,将离散动态图神经 ODE 分为时空图神经
ODE 和多智能体神经 ODE. 本文提出的图神经 ODE
方法分类体系如下图所示.
- Xhonneux L P, Qu M, Tang J. Continuous graph neural networks[C]//International conference on machine learning. PMLR, 2020: 10432-10441.论文 代码
- Poli M, Massaroli S, Park J, et al. Graph neural ordinary differential equations[J]. arXiv preprint arXiv:1911.07532, 2019. 论文 代码
- Zhang Y, Gao S, Pei J, et al. Improving social network embedding via new second-order continuous graph neural networks[C]//Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. 2022: 2515-2523. 论文
- Rusch T K, Chamberlain B, Rowbottom J, et al. Graph-coupled oscillator networks[C]//International Conference on Machine Learning. PMLR, 2022: 18888-18909. 论文 代码
- Hwang J, Choi J, Choi H, et al. Climate modeling with neural diffusion equations[C]//2021 IEEE International Conference on Data Mining (ICDM). IEEE, 2021: 230-239. 论文 代码
- Zang C, Wang F. Neural dynamics on complex networks[C]//Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020: 892-902.论文 代码
- Fang Z, Long Q, Song G, et al. Spatial-temporal graph ode networks for traffic flow forecasting[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 364-373. 论文 代码
- Jin M, Zheng Y, Li Y F, et al. Multivariate time series forecasting with dynamic graph neural odes[J]. IEEE Transactions on Knowledge and Data Engineering, 2022. 论文 代码
- Chen Y, Qin Y, Li K, et al. Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction[J]. IEEE Transactions on Vehicular Technology, 2023. 论文
- Huang Z, Sun Y, Wang W. Coupled graph ode for learning interacting system dynamics[C]//Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining. 2021: 705-715. 论文
- Luo X, Yuan J, Huang Z, et al. Hope: High-order graph ode for modeling interacting dynamics[C]//International Conference on Machine Learning. PMLR, 2023: 23124-23139. 论文
- Hou J, Guo X, Liu J, et al. Structure-Enhanced Graph Neural ODE Network for Temporal Link Prediction[C]//International Conference on Artificial Neural Networks. Cham: Springer Nature Switzerland, 2023: 563-575. 代码
- Guo J, Zhang P, Li C, et al. Evolutionary preference learning via graph nested gru ode for session-based recommendation[C]//Proceedings of the 31st ACM international conference on information & knowledge management. 2022: 624-634. 论文
- Wang Z, Yang P, Fan X, et al. Contig: Continuous representation learning on temporal interaction graphs[J]. Neural Networks, 2024, 172: 106151. 论文
- Jin M, Li Y F, Pan S. Neural temporal walks: Motif-aware representation learning on continuous-time dynamic graphs[J]. Advances in Neural Information Processing Systems, 2022, 35: 19874-19886. 论文
- Qin Y, Ju W, Wu H, et al. Learning graph ODE for continuous-time sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024.论文
- Poli M, Massaroli S, Park J, et al. Graph neural ordinary differential equations[J]. arXiv preprint arXiv:1911.07532, 2019. 论文 代码
- Huang Z, Sun Y, Wang W. Learning continuous system dynamics from irregularly-sampled partial observations[J]. Advances in Neural Information Processing Systems, 2020, 33: 16177-16187. 论文
- Huang Z, Zhao W, Gao J, et al. TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems[J]. arXiv preprint arXiv:2310.06427, 2023. 论文
- Jiang S, Huang Z, Luo X, et al. Cf-gode: Continuous-time causal inference for multi-agent dynamical systems[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 997-1009.论文
- Huang Z, Sun Y, Wang W. Generalizing graph ode for learning complex system dynamics across environments[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023: 798-809. 论文
- Liu Y, Cheng J, Zhao H, et al. Physics-Inspired Neural Graph ODE for Long-term Dynamical Simulation[J]. arXiv preprint arXiv:2308.13212, 2023.论文
- Gao Z, Wang H, Wang Y B, et al. Probabilistic continuous-time whole-graph forecasting[J]. 2022.论文