This repository is the source code of paper: "A combined recall and rank framework with online negative sampling for Chinese procedure terminology normaliztion"
/data
contains the raw data file used in this paper, which could be downloaded from http://openkg.cn/dataset/yidu-n7k.
/dict
contains the keywords dictionary used for keywords attentive mechanism, in which body.txt includes procedure site words and ot.txt includes procedure type words.
rerank_k_fold_data
contains the k-fold training data for keywords attentive ranker, which is generated by candidate generator.
/output
contains the output results(such as saved model, middel output, caches for prediction), you should pass a output_name parameter each time you run the experiment.
We use the bert trained on Chinese corpus provided by google. You could change the defalut path in train.py and rerank_keywords.py by the arg parameter pretrained_model_path
, you could also change it in the running command
Train:
# k_fold_id range from [0, 4]
# device_id is used when you have multiple gpu, starts from 0
python train.py -output_name={your_output_name} -k_fold={k_fold_id} -device={devicd_id} -pretrained_model_path={your_pretrained_model_path}
# if you don't want to use k-fold, just run:
python train.py -output_name={your_output_name} -device={device_id} -pretrained_model_path={your_pretrained_model_path}
After you run the following code, there should be a folder /output/mto_output/{your_output_name}
. If you use k-fold, there should be 5 folders for each fold, to evaluate, just run:
python train.py -output_name={your_ourput_name}_test -type=evaluate -k_fold=0 -saved_model_path=./output/mto_output/{your_output_name} -generate_candidates=test -device={device_id} -pretrained_model_path={your_pretrained_model_path}
Train
python rerank_keywords.py -k_fold={k_fold_id} -output_name={your_output_name} -device={device_id} -pretrained_model_path={your_pretrained_model_path}
Evaluate
python rerank_keywords.py -type=evaluate -output_name={your_output_name}_test -saved_model_path=./output/rerank_keywords_output/{your_output_name} -generate_candidates=test -device=0 -k_fold=0