- Design, build, train, and test a deep learning pipeline for feature detection using thoracic CT scans of patients’ hearts
- Obtain thoracic CT scans of patients
- Design and implement an annotation tool to annotate crop landmarks for the CT scans
- Implement a normalization pipeline to normalize the CT scans into 3D arrays
- Design and implement a CNN that performs feature selection on the normalized arrays
See docs folder for a manual with usage and a tutorial.
GUI tool to annotate DICOM images and batch export.
To run, type python CTImageAnnotationTool.py
See docs folder for a manual with usage and a tutorial.
To Run, type python CNN_main.py **kwargs
See docs folder for a manual with usage and a tutorial.
- About half the final presentation slides (3/8)
- Annotation Tool Manual/Tutorial
- Code
- AnnotationWidget.py
- CTImageAnnotationTool.py
- CTImageAnnotationToolMainWindow.py
- DataExport.py
- DataNormalization.py (with Yuan's help)
- DataReader.py
- DICOMCrossSectionalImage.py
- HeartLandmarks.py
- MathUtil.py
- SpinnerDialComboWidget.py
- ViewSliceDataWidget.py
- ViewSliceWidget.py
- XYSpinnerComboWidget.py
- About half the final presentation slides (4/8)
- Med3DResNet Manual/Tutorial
- Code
- CNN_batch_run.py
- CNN_main.py
- CNN_ops.py
- CNN_ResNet.py
- CNN_utils.py
- Visualization.py (includes most plots/videos)
- README.md
- Some of the final presentation slides (1/8)
- Code
- preprocess.py (some preprocessing images, mainly integrated into Luben's GUI)
- Docker Container Setup and Build