-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer4.py
54 lines (43 loc) ยท 2.51 KB
/
infer4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import pandas as pd
import torch
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from main import OCRDataset_infer, max_length
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline,AutoFeatureExtractor
if __name__ == '__main__':
#model = VisionEncoderDecoderModel.from_pretrained('C:/Users/tm011/Desktop/COMP/trocr_large_add_data_total_GNnoise/checkpoint-83676')
#tokenizer = AutoTokenizer.from_pretrained('C:/Users/tm011/Desktop/COMP/trocr_large_add_data_total_GNnoise/checkpoint-83676')
model = VisionEncoderDecoderModel.from_pretrained(
'./four/checkpoint-447300')
tokenizer = AutoTokenizer.from_pretrained(
'./four/checkpoint-447300')
#processor = TrOCRProcessor.from_pretrained('C:/Users/tm011/Desktop/COMP/output_beit_ko/checkpoint-10')
#feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/beit-base-patch16-224")
processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-handwritten',size=384)
# vision_hf_model = 'timm/beitv2_base_patch16_224.in1k_ft_in22k_in1k'
# nlp_hf_model = "klue/roberta-large"
# model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(vision_hf_model, nlp_hf_model)
# tokenizer = AutoTokenizer.from_pretrained(nlp_hf_model)
# processor = TrOCRProcessor.from_pretrained('microsoft/trocr-large-handwritten', size=224)
test_df= pd.read_csv('./test.csv')
test_dataset = OCRDataset_infer(root_dir ='',
df=test_df,
processor=processor
)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False,num_workers=4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.eval()
model.to(device)
pred = []
with torch.no_grad():
for batch_id, x in enumerate(tqdm(test_dataloader)):
#pixel_values = (processor(image, return_tensors="pt").pixel_values).to(device)
pixel_values = x['pixel_values'].to(device)
generated_ids = model.generate(pixel_values)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True,max_length=max_length)
print(generated_text)
pred.extend(generated_text)
submit = pd.read_csv('./sample_submission.csv')
submit['label'] = pred
submit.to_csv('./four_check-point-447300.csv', index=False)