-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain2.py
309 lines (244 loc) Β· 10.3 KB
/
train2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import random
import pandas as pd
import numpy as np
import os
from transformers import TrOCRProcessor
from PIL import Image
import random
import imgaug.augmenters as iaa
import imageio
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision.models import resnet18
from torchvision import transforms
import matplotlib.pyplot as plt
from tqdm.auto import tqdm
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from transformers import AutoTokenizer,AutoModelForTokenClassification,TokenClassificationPipeline,AutoFeatureExtractor
from transformers import VisionEncoderDecoderModel, AutoTokenizer
from transformers import TrOCRProcessor
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments
from datasets import load_metric
import evaluate
import warnings
from transformers import default_data_collator
warnings.filterwarnings(action='ignore')
CFG = {
'IMG_HEIGHT_SIZE': 64,
'IMG_WIDTH_SIZE': 224,
'EPOCHS': 20,
'LEARNING_RATE': 1e-3,
'BATCH_SIZE': 256,
'NUM_WORKERS': 0, # λ³ΈμΈμ GPU, CPU νκ²½μ λ§κ² μ€μ
'SEED': 41
}
cer_metric = evaluate.load("cer")
wer_metric = evaluate.load("wer")
max_length = 64
def image_resize_1(image):
aug1 = iaa.Resize({"height": 32, "width": image.shape[1]})
return aug1(image=image)
def image_resize_2(image):
aug1 = iaa.Resize({"height": image.shape[0], "width": 32})
return aug1(image=image)
def my_Gnoise(image,su):
#aug1 = iaa.Dropout(p=0.02) # 첫 λ²μ§Έ μ¦κ° κΈ°λ² : Dropout #p = 0.05
aug1 = iaa.AdditiveGaussianNoise(scale=(0, su*255),per_channel=False) # λ λ²μ§Έ μ¦κ° κΈ°λ² : GaussianBlur #2~5
#first_aug = aug2(image = image) # Dropout μ μ©
return aug1(image = image) # GaussianBlur μ μ© ν κ²°κ³Ό λ°ν
def my_Nnoise(image,su):
o = image.shape[0]
l = image.shape[1]
if o<=31:
image = image_resize_1(image=image)
if l<=31:
image = image_resize_2(image=image)
aug1 = iaa.imgcorruptlike.DefocusBlur(severity=su) # 첫 λ²μ§Έ μ¦κ° κΈ°λ² : Dropout #p = 0.05
#aug1 = iaa.GaussianBlur(sigma=su) # λ λ²μ§Έ μ¦κ° κΈ°λ² : GaussianBlur #2~5
# first_aug = aug2(image = image) # Dropout μ μ©
return aug1(image=image) # GaussianBlur μ μ© ν κ²°κ³Ό λ°ν
def my_GNnoise(image,su,su2):
o = image.shape[0]
l = image.shape[1]
if o <= 31:
image = image_resize_1(image=image)
if l <= 31:
image = image_resize_2(image=image)
aug1 = iaa.imgcorruptlike.DefocusBlur(severity=su2) # 첫 λ²μ§Έ μ¦κ° κΈ°λ² : Dropout #p = 0.05
aug2 = iaa.AdditiveGaussianNoise(scale=(0, su*255),per_channel=False) # λ λ²μ§Έ μ¦κ° κΈ°λ² : GaussianBlur #2~5
first_aug = aug1(image = image) # Dropout μ μ©
return aug2(image=first_aug) # GaussianBlur μ μ© ν κ²°κ³Ό λ°ν
def rotate(image,su):
aug1 = iaa.Rotate((-1*su,su))
return aug1(image=image)
class OCRDataset(Dataset):
def __init__(self, root_dir, df, processor,mode='train',max_target_length=128):
self.root_dir = root_dir
self.df = df
self.processor = processor
self.max_target_length = max_target_length
self.mode = mode
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# get file name + text
file_name = self.df['img_path'][idx]
text = self.df['label'][idx]
# prepare image (i.e. resize + normalize)
if self.mode =='train':
aug1 = random.random()
aug2 = random.random()
image = imageio.imread(self.root_dir + file_name)
if aug1>0.7:
su = random.randint(10, 20)
image = rotate(image=image, su=su)
if aug2>0.3:
su = random.uniform(0.0, 0.06)
noise_index = random.random()
if noise_index > 0.3:
su2 = 2
else:
su2 = 3
image = my_GNnoise(image=image, su=su, su2=su2)
image = Image.fromarray(image).convert("RGB")
else:
image = Image.open(self.root_dir + file_name).convert("RGB")
pixel_values = self.processor(image, return_tensors="pt").pixel_values
# add labels (input_ids) by encoding the text
labels = self.processor.tokenizer(text,
padding="max_length",
max_length=self.max_target_length).input_ids
# important: make sure that PAD tokens are ignored by the loss function
labels = [label if label != self.processor.tokenizer.pad_token_id else -100 for label in labels]
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
return encoding
class OCRDataset_infer(Dataset):
def __init__(self, root_dir, df, processor, max_target_length=128):
self.root_dir = root_dir
self.df = df
self.processor = processor
self.max_target_length = max_target_length
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# get file name + text
file_name = self.df['img_path'][idx]
# prepare image (i.e. resize + normalize)
image = Image.open(self.root_dir + file_name).convert("RGB")
pixel_values = self.processor(image, return_tensors="pt").pixel_values
# add labels (input_ids) by encoding the text
encoding = {"pixel_values": pixel_values.squeeze()}
return encoding
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
return {"cer": cer}
###########################
if __name__ == '__main__':
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
seed_everything(CFG['SEED']) # Seed κ³ μ
df = pd.read_csv('./train.csv')
df['len'] = df['label'].str.len()
train_v1 = df[df['len'] == 1]
df = df[df['len'] > 1]
train_v2, val, _, _ = train_test_split(df, df['len'], test_size=0.1, random_state=CFG['SEED'])
train = pd.concat([train_v1, train_v2])
print(len(train), len(val))
train_gt = [gt for gt in train['label']]
train_gt = "".join(train_gt)
letters = sorted(list(set(list(train_gt))))
print(len(letters))
vocabulary = ["-"] + letters
print(len(vocabulary))
idx2char = {k: v for k, v in enumerate(vocabulary, start=0)}
char2idx = {v: k for k, v in idx2char.items()}
df = train
#train = pd.concat([train,val])
print(len(train), len(val))
train.reset_index(drop=True, inplace=True)
val.reset_index(drop=True, inplace=True)
#model = VisionEncoderDecoderModel.from_pretrained('daekeun-ml/ko-trocr-base-nsmc-news-chatbot')
#tokenizer = AutoTokenizer.from_pretrained('daekeun-ml/ko-trocr-base-nsmc-news-chatbot')
#processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
#model = VisionEncoderDecoderModel.from_pretrained("C:/Users/tm011/Desktop/COMP/output_large/checkpoint-161028")
#config = model.config
#config.encoder.num_hidden_layers = 30
#config.encoder.num_attention_heads = 18
#config.encoder.hidden_dropout_prob = 0.1
#config.decoder.dropout = 0.1
#config.decoder.decoder_layers = 16
#config.decoder.use_bfloat16 = True
#config.encoder.use_bfloat16 = True
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten")
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-large-handwritten")
#model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-large-handwritten",config=config)
#processor = TrOCRProcessor.from_pretrained("C:/Users/tm011/Desktop/COMP/output_large/checkpoint-161028")
train_dataset = OCRDataset(root_dir='',
df=train,
processor=processor,
mode='train'
)
val_dataset = OCRDataset(root_dir='',
df=val,
processor=processor,
mode='val'
)
print("Number of training examples:", len(train_dataset))
print("Number of validation examples:", len(val_dataset))
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
# make sure vocab size is set correctly
model.config.vocab_size = 2350
# set beam search parameters
# model.config.eos_token_id = processor.tokenizer.sep_token_id
# model.config.max_length = 64
model.config.early_stopping = True
# model.config.no_repeat_ngram_size = 3
# model.config.length_penalty = 2.0
# model.config.num_beams = 4
#model.config.decoder.encoder.add_cross_attention = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
model.to(device)
training_args = Seq2SeqTrainingArguments(
learning_rate=2e-6,
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
bf16=True,
output_dir="./second",
logging_steps=100,
save_steps=17892,
eval_steps=17892,
num_train_epochs=20,
save_total_limit=50,
dataloader_num_workers = 4
)
trainer = Seq2SeqTrainer(
model=model,
tokenizer=processor,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=default_data_collator,
)
trainer.train()