Image data augmentation for learning algorithm. This repo is highly based on takmin's c++ version.
- Python 2.7
- numpy
- scikit-image
You can install with pip or just clone the repo:
pip install pydaag
Your input images should be a numpy arrary with shape (img_numbers, img_rows, img_cols, img_channels).
If input images are grayscale, then the shape should be (img_numbers, img_rows, img_cols).
Simple example:
from pydaag import pydaag
#######################################################################
#inputs:
# images: input images
# x_slide: Maximum slide in X direction, it's ratio of width of image.
# y_slide: Maximum slide in Y direction, it's ratio of height of image.
# z_rotateion: Maximum rotation around Z axis.
# y_rotateion: Maximum rotation around Y axis.
# x_rotateion: Maximum rotation around X axis.
# blur_max_sigma: Maximum standard deviation of Gaussian blur.
# noise_max_sigma: Maximum standard deviation of Gaussian noise
#######################################################################
images_ = pydaag.data_augmentation(images, x_slide=0.2, y_slide=0.2,
z_rotation=20, y_rotation=20, x_rotation=20,
blur_max_sigma=3, noise_max_sigma=20)
You can find an example in test\test.py.
Run the test file:
git clone https://github.com/taoyizhi68/py-data-augmentation.git
cd py-data-augmentation\test
python test.py
inputs:
outputs: