Skip to content

tdavchev/autoencoding-trajectories

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic Seq2Seq for Trajectory Understanding

Using Seq2Seq to assign actions to trajectories.

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

For this repo you need:

  • tensorflow -v 1.4.0
  • Numpy -v 1.14.2
  • Scikit-learn -v 0.19.1
  • argparse -v 1.1
pip install tensorflow-gpu=1.4.0
pip install numpy, scikit-learn, argparse

Installing

A step by step series of examples that tell you how to get a development env running.

Download the repository.

git clone git@github.com:yadrimz/autoencoding-trajectories.git

You can train and infer. Run help for full documentation.

python main.py -h

To train:

python main.py --mode 'train'

Sample output:

Batch: 1
  minibatch_loss: 1.0833992958068848
  accuracy: 0.2222222222222222
   sample: 1
      sequence real id         :> 8
      target start             :> [4 3 5]
      predicted start          :> [3 3 1]
      target end region        :> [3 5]
      predicted end region     :> [3 1]
   sample: 2
      sequence real id         :> 7
      target start             :> [3 2 5]
      predicted start          :> [6 5 5]
      target end region        :> [2 5]
      predicted end region     :> [5 5]
   sample: 3
      sequence real id         :> 14
      target start             :> [4 1 5]
      predicted start          :> [5 3 4]
      target end region        :> [1 5]
      predicted end region     :> [3 4]

To infer after having trained a model:

python main.py --mode 'infer'

Project Structure

Project File Structure:
-data
---timeseries_25_May_2018_18_51_49-walk3.npy
-models
---model.py
-utils
---utils.py
-main.py
-README.md

Authors

  • Todor Davchev

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

Releases

No releases published

Packages

No packages published

Languages