Skip to content
forked from karpathy/nanoGPT

The simplest, fastest repository for training/finetuning medium-sized GPTs.

License

Notifications You must be signed in to change notification settings

teamRT7/nanoGPT

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

nanoGPT

The simplest, fastest repository for training/finetuning medium-sized GPTs. It's a re-write of minGPT, which I think became too complicated, and which I am hesitant to now touch. Still under active development, currently working to reproduce GPT-2 on OpenWebText dataset. The code itself aims by design to be plain and readable: train.py is a ~300-line boilerplate training loop and model.py a ~300-line GPT model definition, which can optionally load the GPT-2 weights from OpenAI. That's it.

install

Dependencies:

  • pytorch <3
  • pip install datasets for huggingface datasets <3 (if you want to download + preprocess OpenWebText)
  • pip install tiktoken for OpenAI's fast bpe code <3
  • pip install wandb for optional logging <3
  • pip install tqdm

usage

To render a dataset we first tokenize some documents into one simple long 1D array of indices. E.g. for OpenWebText see:

$ cd data/openwebtext
$ python prepare.py

To download and tokenize the OpenWebText dataset. This will create a train.bin and val.bin which holds the GPT2 BPE token ids in one sequence, stored as raw uint16 bytes. Then we're ready to kick off training. The training script currently by default tries to reproduce the smallest GPT-2 released by OpenAI, i.e. the 124M version of GPT-2. We can demo train as follows on a single device, though I encourage you to read the code and see all of the settings and paths up top in the file:

$ python train.py

To train using PyTorch Distributed Data Parallel (DDP) run the script with torchrun. For example to train on a node with 4 GPUs run:

$ torchrun --standalone --nproc_per_node=4 train.py

To my knowledge, running this with the current script with the GPT-2 hyperparameters should reproduce the GPT-2 result, provided that OpenWebText ~= WebText. I'd like to make the code more efficient before attempting to go there. Once some checkpoints are written to the output directory (e.g. ./out by default), we can sample from the model:

$ python sample.py

Training on 1 A100 40GB GPU overnight currently gets loss ~3.74, training on 4 gets ~3.60. Random chance at init is -ln(1/50257) = 10.82. Which brings us to baselines:

finetuning

For an example of how to finetune a GPT on new text go to data/shakespeare and look at prepare.py to download the tiny shakespeare dataset and render it into a train.bin and val.bin. Unlike OpenWebText this will run in seconds. Finetuning takes very little time, e.g. on a single GPT just a few minutes. Run an example finetuning like:

$ python train.py finetune_shakespeare

This will load the config parameter overrides in config/finetune_shakespeare.py (I didn't tune them much though). Basically, we initialize from a GPT2 checkpoint with init_from and train as normal, except shorter and with a small learning rate. The best checkpoint (lowest validation loss) will be in the out_dir directory, e.g. in out-shakespeare by default, per the config file. You can then run the code in sample.py to generate infinite Shakespeare. Note that you'll have to edit it to point to the correct out_dir.

baselines

OpenAI GPT-2 checkpoints allow us to get some baselines in place for openwebtext. We can get the numbers as follows:

$ python train.py eval_gpt2
$ python train.py eval_gpt2_medium
$ python train.py eval_gpt2_large
$ python train.py eval_gpt2_xl

and observe the following losses on train and val:

model params train loss val loss
gpt2 124M 3.11 3.12
gpt2-medium 350M 2.85 2.84
gpt2-large 774M 2.66 2.67
gpt2-xl 1558M 2.56 2.54

I briefly tried finetuning gpt2 a bit more on our OWT and didn't notice dramatic improvements, suggesting that OWT is not much much different from WT in terms of the data distribution, but this needs a bit more thorough attempt once the code is in a better place.

benchmarking

For model benchmarking bench.py might be useful. It's identical what happens in the meat of the training loop of train.py, but omits much of the other complexities.

efficiency notes

Code by default now uses PyTorch 2.0. At the time of writing (Dec 29, 2022) this makes torch.compile() available in the nightly release. The improvement from the one line of code is noticeable, e.g. cutting down iteration time from ~250ms / iter to 135ms / iter. Nice work PyTorch team!

todos

A few todos I'm aware of:

Optimizations

  • Additional optimizations to the running time
  • Investigate need for an actual Data Loader with a dedicated worker process for data
  • Look into more efficient fused optimizers (e.g. apex)
  • Re-evaluate use of flash attention (previously I wasn't able to get the forward pass to match up so I took it out)
  • CUDA Graphs?
  • Investigate potential speedups from Lightning or huggingface Accelerate

Features / APIs

  • Add back fp16 support? (would need to also add back gradient scaler)
  • Add CPU support
  • Finetune the finetuning script, I think the hyperparams are not great
  • Replace poor man's configurator, and make sample.py configurable...
  • Report and track other metrics e.g. perplexity, num_tokens, MFU, ...
  • Eval zero-shot perplexities on PTB, WikiText, other related benchmarks

Suspiciousness

  • Current initialization (PyTorch default) departs from GPT-2. In a very quick experiment I found it to be superior to the one suggested in the papers, but that can't be right?
  • I am still not 100% confident that my GPT-2 small reproduction hyperparameters are good, if someone has reproduced GPT-2 I'd be eager to exchange notes ty

Results

  • Actually reproduce GPT-2 results and have clean configs that reproduce the result. It was estimated ~3 years ago that the training cost of 1.5B model was ~$50K (?). Sounds a bit too high.

About

The simplest, fastest repository for training/finetuning medium-sized GPTs.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%