forked from jpober/21cmSense
-
Notifications
You must be signed in to change notification settings - Fork 1
Code for calculating the sensitivity of 21cm experiments to Dark Ages power spectrum
License
Unknown, GPL-3.0 licenses found
Licenses found
Unknown
LICENSE
GPL-3.0
LICENSE-GPL
telegraphic/21cmSense
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This is 21cmSense, a python package for calculating the expected sensitivities of 21cm experiments to the Epoch of Reionization power spectrum. For details of the observing strategy assumed by this code, and other relevant scientific information, please see Pober et al. 2013AJ....145...65P and Pober et al. 2014ApJ...782...66P. Developer: Jonathan Pober (jpober <at> uw <dot> edu). =============================================================================== Dependencies: numpy scipy aipy (https://github.com/AaronParsons/aipy) =============================================================================== There are two main code pieces: mk_array_file.py and calc_sense.py. The array files produced by mk_array_file are the inputs to calc_sense.py. The inputs to mk_array_file.py are calibration files, which are also python scripts, but not executable. Each of these components will be described in turn. calibration files: These files will contain all the information about the array you are trying to calculate sensitivities for. Most importantly, they contain the positions of all the antennas, but also information about the antenna size and system temperature. An example calibration file for use with this package has been included: hera127.py. To modify for other arrays, you should only need to change the values in the "ARRAY SPECIFIC PARAMETERS" section. mk_array_file.py: This code takes calibration files as input (note that when calling a calibration file from the command line, one needs to omit the '.py' on the end), and returns a .npz file that can be read by calc_sense.py. As it stands, this code should require no user modification for a drift scan with any antenna array. For a tracked scan, the opts.track keyword should be set to the length of the track in hours. Note that no correction is made for the dipole beam of phased array tiles while tracking. Therefore, this calculation will break down for very long tracks. The opts.bl_max keyword can also be specified to set a maximum size of the uv plane simulated (by default the longest baseline in the array is always included). This can be useful for speeding up calculations where outrigger antennas greatly increase the size of the uv plane but provide little EoR sensitivity. calc_sense.py: This is the main portion of the package. To run with defaults, it should only need an array file as input. Through the command line, the user can change the foreground avoidance/subtraction model, the observing frequency, the epoch of reionization model (which is required to calculate sample variance), and the total observing time. A redshift 9.5 ~50% ionization model produced by 21cmFAST has been included. The code can natively handle any power spectrum output from 21cmFAST, but should be easily modifiable to include other models. Since the calculated sensitivities are for a single frequency, one should change the observing frequency if one uses a power spectrum from a redshift other than the default (z = 9.5). Changing more detailed parameters, like the sky temperature model, will require editing of the code itself. The code also now contains the opts.no_ns option, which excludes the u = 0 column of the uv plane; this effectively removes north/south oriented baselines from the sensitivity ccalculation, which can be corrupted by systematics due to their low fringe rate. Questions, comments, or feedback should be directed to jpober <at> uw <dot> edu.If you use this code in any of your work, please acknowledge Pober et al. 2013AJ....145...65P and Pober et al. 2014ApJ...782...66P and provide a link to this repository.
About
Code for calculating the sensitivity of 21cm experiments to Dark Ages power spectrum
Resources
License
Unknown, GPL-3.0 licenses found
Licenses found
Unknown
LICENSE
GPL-3.0
LICENSE-GPL
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 55.4%
- Jupyter Notebook 44.6%