This project contains python code for twitter mining.
My goal is to find novel ways to summarize topics and trends on twitter.
-
Run filter_tweets_streaming_api.py to load tweets to couchdb. The delay shows when your consumer is too slow.
$ python filter_tweets_streaming_api.py test twitter
opened test
Track parameters ['twitter']
Delay 0 seconds. created_at 2012-03-05 01:11:45. id_str '17647.....'. tweeter 'sometweeter'. tweet 'I love to tweet!'
Delay 0 seconds. created_at 2012-03-05 01:11:45. id_str '17647.....'. tweeter 'tweeter_guy'. tweet 'Twitter is fun!'
... -
Run views.py to create indexes on your couchdb database
$ python views.py test -
Run a "reporting" script such as top_tweeters_by_follower_count.py and send a summary email of tweets
$ python top_tweeters_by_follower_count.py -d test 2012-03-05 --dry-run
Top 10 tweeters
tweeter1
"look at my awesome tweet"
tweeter2
"i'm colder than a polar bears toe nails" -
That's all for now...