Skip to content

test-ydwen/centerloss

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This branch is the implementation of the paper "A Comprehensive Study for Center Loss".

Implement_Details

The overall pipeline is the same as center loss (https://github.com/ydwen/caffe-face).

In this paper, we use CAISA-WebFace, VGG-Face2 For the details of removing overlapping ID, please refer to https://github.com/happynear/FaceDatasets

Preprocessing We use MTCNN (https://github.com/kpzhang93/MTCNN_face_detection_alignment) to detect five facial keypoints and use them to align the faces. For the alignment details, please see https://github.com/ydwen/caffe-face/blob/caffe-face/face_example/extractDeepFeature.m

Training The training details can be found on according prototxt. Note that the batch size we used is 512.

Loss layer

Center Loss & Generalized Center Loss

    layer {
         name: "generalized_center_loss"
         type: "CenterLoss"
         bottom: "fc5"
         bottom: "label"
         top: "center_loss"
         top: "count"
         param {
             lr_mult: 1
             decay_mult: 1
         }
         center_loss_param {
             num_output: 7994
             margin:5 ##radius##
             center_filler {
               type: "xavier"
             }
         }
         loss_weight: 0.01
         loss_weight: 0.0
     }

Advanced Center Loss & Generalized Center Loss

    layer {
         name: "advanced_center_loss"
         type: "SharedCenterLoss"
         bottom: "fc5"
         bottom: "label"
         top: "shared_center_loss"
         top: "count"
         param {
           name:"center"
           lr_mult: 1
           decay_mult: 1
         }
         param {
           lr_mult: 1
           decay_mult: 0
         }
         shared_center_loss_param {
           num_output: 7994
           margin:5 ##radius##
           gamma_shared: True ##share weights##
           center_filler {
             type: "xavier"
           }
           gamma_filler{
             type:"constant"
             value:1
           }
         }
         loss_weight: 0.01
         loss_weight: 0.0
       }

Files

  • caffe
    • caffe.proto
    • center_loss_layer.hpp
    • center_loss_layer.cpp
    • center_loss_layer.cu
    • shared_center_loss_layer.hpp
    • shared_center_loss_layer.cpp
    • shared_center_loss_layer.cu
  • deploy_prototxt
    • resnet4.prototxt
    • resnet10.prototxt
    • resnet20.prototxt
    • resnet36.prototxt
    • resnet64.prototxt
  • exp4_2
    • Parameter sharing
    • Loss Weight
    • Radius
    • Training_set
    • Depth
  • exp4_3
    • softmax
    • softmax + contrastive
    • normface
    • coco
    • SphereFace
    • softmax + CL
    • softmax + ACL
    • softmax + ACL-γ
    • coco + ACL-γ
    • sphere + ACL-γ
  • exp4_4 & exp4_5 & exp4_6
    • softmax
    • softmax + CL
    • softmax+ ACL-γ
    • softmax + CL (ρ=5)
    • softmax+ ACL-γ (ρ=5)
    • sphere+ ACL-γ (ρ=5)
  • training_list

Trained_Model

Contact

License

Copyright (c) Yandong Wen, Kaipeng Zhang All rights reserved. MIT License

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published