Skip to content

testreen/ThesisProject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ThesisProject

MSc thesis project at KTH

To install

Using Conda environment, use the requirements.txt file. For EfficientNet, additional steps required described below.

EfficientNet

Original code from: https://github.com/lukemelas/EfficientNet-PyTorch.

To install:

cd EfficientNet-Pytorch
pip install -e .

To train example:

python efficientNet.py --epochs 100 --pretrained --batch-size 64 --wd 1e-4 --lr 1.25e-2 --image_size 32 --momentum 0.9 --advprop -val

Arguments and dataset root folder provided in efficientNet.py and file paths defined in parseData.py.

EfficientDet

Original code from: https://github.com/toandaominh1997/EfficientDet.Pytorch.

No extra installation required.

Available arguments and file paths provided in each file.

To test that everything is working (EfficientNet pre-trained backbone and EfficientDet):

cd EfficientDet.Pytorch
python test.py

To train example:

cd EfficientDet.Pytorch
python train.py

To evaluate a trained model:

cd EfficientDet.Pytorch
python eval.py

To evaluate and visualize one 2000x2000 WSI:

cd EfficientDet.Pytorch
python evalSlide.py

About

MSc thesis project at KTH

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published