forked from InsightSoftwareConsortium/ITK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
itkImageToImageMetricv4.hxx
688 lines (621 loc) · 25 KB
/
itkImageToImageMetricv4.hxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkImageToImageMetricv4_hxx
#define itkImageToImageMetricv4_hxx
#include "itkPixelTraits.h"
#include "itkDisplacementFieldTransform.h"
#include "itkCompositeTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkIdentityTransform.h"
namespace itk
{
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
ImageToImageMetricv4()
{
/* Interpolators. Default to linear. */
using FixedLinearInterpolatorType = LinearInterpolateImageFunction<FixedImageType, CoordinateRepresentationType>;
using MovingLinearInterpolatorType = LinearInterpolateImageFunction<MovingImageType, CoordinateRepresentationType>;
this->m_FixedInterpolator = FixedLinearInterpolatorType::New();
this->m_MovingInterpolator = MovingLinearInterpolatorType::New();
/* Setup default gradient filter. It gets initialized with default
* parameters during Initialize. */
this->m_DefaultFixedImageGradientFilter = DefaultFixedImageGradientFilter::New();
this->m_DefaultMovingImageGradientFilter = DefaultMovingImageGradientFilter::New();
this->m_FixedImageGradientFilter = this->m_DefaultFixedImageGradientFilter;
this->m_MovingImageGradientFilter = this->m_DefaultMovingImageGradientFilter;
/* Interpolators for image gradient filters */
this->m_FixedImageGradientInterpolator = FixedImageGradientInterpolatorType::New();
this->m_MovingImageGradientInterpolator = MovingImageGradientInterpolatorType::New();
/* Setup default gradient image function */
this->m_DefaultFixedImageGradientCalculator = DefaultFixedImageGradientCalculator::New();
this->m_DefaultFixedImageGradientCalculator->UseImageDirectionOn();
this->m_FixedImageGradientCalculator = this->m_DefaultFixedImageGradientCalculator;
this->m_DefaultMovingImageGradientCalculator = DefaultMovingImageGradientCalculator::New();
this->m_DefaultMovingImageGradientCalculator->UseImageDirectionOn();
this->m_MovingImageGradientCalculator = this->m_DefaultMovingImageGradientCalculator;
/* Setup default options assuming dense-sampling */
this->m_UseFixedImageGradientFilter = true;
this->m_UseMovingImageGradientFilter = true;
this->m_UseSampledPointSet = false;
this->m_UseVirtualSampledPointSet = false;
this->m_FloatingPointCorrectionResolution = 1e6;
this->m_UseFloatingPointCorrection = false;
this->m_HaveMadeGetValueWarning = false;
this->m_NumberOfSkippedFixedSampledPoints = 0;
this->m_Value = NumericTraits<MeasureType>::max();
this->m_DerivativeResult = nullptr;
this->m_ComputeDerivative = false;
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
Initialize()
{
itkDebugMacro("Initialize entered");
/* Verify things are connected */
if (this->m_FixedImage.IsNull())
{
itkExceptionMacro(<< "FixedImage is not present");
}
if (this->m_MovingImage.IsNull())
{
itkExceptionMacro(<< "MovingImage is not present");
}
if (this->m_FixedTransform.IsNull())
{
itkExceptionMacro(<< "FixedTransform is not present");
}
if (this->m_MovingTransform.IsNull())
{
itkExceptionMacro(<< "MovingTransform is not present");
}
// If the image is provided by a source, update the source.
if (this->m_MovingImage->GetSource())
{
this->m_MovingImage->GetSource()->Update();
}
// If the image is provided by a source, update the source.
if (this->m_FixedImage->GetSource())
{
this->m_FixedImage->GetSource()->Update();
}
/* If a virtual image has not been set or created,
* create one from fixed image settings */
if (!this->m_UserHasSetVirtualDomain)
{
/* Instantiate a virtual image, but do not call Allocate to allocate
* the data, to save memory. We don't need data. We'll simply be iterating
* over the image to get indices and transform to points.
* Note that it will be safer to have a dedicated VirtualImage class
* that prevents accidental access of data. */
/* Just copy information from fixed image */
VirtualImagePointer image = VirtualImageType::New();
image->CopyInformation(this->m_FixedImage);
/* CopyInformation does not copy buffered region */
image->SetBufferedRegion(this->m_FixedImage->GetBufferedRegion());
image->SetRequestedRegion(this->m_FixedImage->GetRequestedRegion());
this->SetVirtualDomainFromImage(image);
}
/*
* Superclass Initialize.
* Requires the above actions to already have been taken.
*/
Superclass::Initialize();
/* Map the fixed samples into the virtual domain and store in
* a separate point set. */
if (this->m_UseSampledPointSet && !this->m_UseVirtualSampledPointSet)
{
this->MapFixedSampledPointSetToVirtual();
}
/* Inititialize interpolators. */
itkDebugMacro("Initialize Interpolators");
this->m_FixedInterpolator->SetInputImage(this->m_FixedImage);
this->m_MovingInterpolator->SetInputImage(this->m_MovingImage);
/* Setup for image gradient calculations. */
if (!this->m_UseFixedImageGradientFilter)
{
itkDebugMacro("Initialize FixedImageGradientCalculator");
this->m_FixedImageGradientImage = nullptr;
this->m_FixedImageGradientCalculator->SetInputImage(this->m_FixedImage);
}
if (!this->m_UseMovingImageGradientFilter)
{
itkDebugMacro("Initialize MovingImageGradientCalculator");
this->m_MovingImageGradientImage = nullptr;
this->m_MovingImageGradientCalculator->SetInputImage(this->m_MovingImage);
}
/* Initialize default gradient image filters. */
itkDebugMacro("InitializeDefaultFixedImageGradientFilter");
this->InitializeDefaultFixedImageGradientFilter();
itkDebugMacro("InitializeDefaultMovingImageGradientFilter");
this->InitializeDefaultMovingImageGradientFilter();
/* If user set to use a pre-calculated fixed gradient image,
* and the metric is set to use fixed image gradients,
* then we need to calculate the gradient image.
* We only need to compute once. */
if (this->GetGradientSourceIncludesFixed() && this->m_UseFixedImageGradientFilter)
{
itkDebugMacro("Initialize: ComputeFixedImageGradientFilterImage");
this->ComputeFixedImageGradientFilterImage();
}
/* Compute gradient image for moving image. */
if (this->GetGradientSourceIncludesMoving() && this->m_UseMovingImageGradientFilter)
{
itkDebugMacro("Initialize: ComputeMovingImageGradientFilterImage");
this->ComputeMovingImageGradientFilterImage();
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
typename ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
MeasureType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetValue() const
{
this->m_ComputeDerivative = false;
DerivativeType local_derivative;
this->m_DerivativeResult = &local_derivative;
this->InitializeForIteration();
// Do the threaded processing using the appropriate
// GetValueAndDerivativeThreader. Results get written to
// member vars.
this->GetValueAndDerivativeExecute();
this->m_DerivativeResult = nullptr; // Pointer to temporary local_derivative is invalid after function return
return this->m_Value;
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetDerivative(DerivativeType & derivative) const
{
MeasureType value;
this->GetValueAndDerivative(value, derivative);
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetValueAndDerivative(MeasureType & value, DerivativeType & derivative) const
{
this->m_ComputeDerivative = true;
this->m_DerivativeResult = &derivative;
this->InitializeForIteration();
// Do the threaded processing using the appropriate
// GetValueAndDerivativeThreader. Results get written to
// member vars.
this->GetValueAndDerivativeExecute();
value = this->m_Value;
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetValueAndDerivativeExecute() const
{
if (this->m_UseSampledPointSet) // sparse sampling
{
SizeValueType numberOfPoints = this->GetNumberOfDomainPoints();
if (numberOfPoints < 1)
{
itkExceptionMacro("VirtualSampledPointSet must have 1 or more points.");
}
typename ImageToImageMetricv4GetValueAndDerivativeThreader<ThreadedIndexedContainerPartitioner, Self>::DomainType
range;
range[0] = 0;
range[1] = numberOfPoints - 1;
this->m_SparseGetValueAndDerivativeThreader->Execute(const_cast<Self *>(this), range);
}
else // dense sampling
{
this->m_DenseGetValueAndDerivativeThreader->Execute(const_cast<Self *>(this), this->GetVirtualRegion());
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
InitializeForIteration() const
{
if (this->m_ComputeDerivative)
{
/* This size always comes from the active transform */
const NumberOfParametersType globalDerivativeSize = this->GetNumberOfParameters();
if (this->m_DerivativeResult->GetSize() != globalDerivativeSize)
{
this->m_DerivativeResult->SetSize(globalDerivativeSize);
}
/* Clear derivative final result. */
this->m_DerivativeResult->Fill(NumericTraits<DerivativeValueType>::ZeroValue());
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
bool
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
TransformAndEvaluateFixedPoint(const VirtualPointType & virtualPoint,
FixedImagePointType & mappedFixedPoint,
FixedImagePixelType & mappedFixedPixelValue) const
{
bool pointIsValid = true;
mappedFixedPixelValue = NumericTraits<FixedImagePixelType>::ZeroValue();
// map the point into fixed space
this->LocalTransformPoint(virtualPoint, mappedFixedPoint);
// check against the mask if one is assigned
if (this->m_FixedImageMask)
{
// Check if mapped point is within the support region of the fixed image
// mask
pointIsValid = this->m_FixedImageMask->IsInsideInWorldSpace(mappedFixedPoint);
if (!pointIsValid)
{
return pointIsValid;
}
}
// Check if mapped point is inside image buffer
pointIsValid = this->m_FixedInterpolator->IsInsideBuffer(mappedFixedPoint);
// Evaluate
if (pointIsValid)
{
mappedFixedPixelValue = this->m_FixedInterpolator->Evaluate(mappedFixedPoint);
}
return pointIsValid;
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
bool
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
TransformAndEvaluateMovingPoint(const VirtualPointType & virtualPoint,
MovingImagePointType & mappedMovingPoint,
MovingImagePixelType & mappedMovingPixelValue) const
{
bool pointIsValid = true;
mappedMovingPixelValue = NumericTraits<MovingImagePixelType>::ZeroValue();
// map the point into moving space
// Before transforming points, we should convert their types from the ImagePointType (aka Point<double, dim>)
// to TransformPointType (aka Point<ScalarType, dim>).
typename MovingTransformType::OutputPointType localVirtualPoint;
typename MovingTransformType::OutputPointType localMappedMovingPoint;
localVirtualPoint.CastFrom(virtualPoint);
localMappedMovingPoint.CastFrom(mappedMovingPoint);
localMappedMovingPoint = this->m_MovingTransform->TransformPoint(localVirtualPoint);
mappedMovingPoint.CastFrom(localMappedMovingPoint);
// check against the mask if one is assigned
if (this->m_MovingImageMask)
{
// Check if mapped point is within the support region of the fixed image
// mask
pointIsValid = this->m_MovingImageMask->IsInsideInWorldSpace(mappedMovingPoint);
if (!pointIsValid)
{
return pointIsValid;
}
}
// Check if mapped point is inside image buffer
pointIsValid = this->m_MovingInterpolator->IsInsideBuffer(mappedMovingPoint);
// Evaluate
if (pointIsValid)
{
mappedMovingPixelValue = this->m_MovingInterpolator->Evaluate(mappedMovingPoint);
}
return pointIsValid;
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
ComputeFixedImageGradientAtPoint(const FixedImagePointType & mappedPoint, FixedImageGradientType & gradient) const
{
if (this->m_UseFixedImageGradientFilter)
{
if (!this->GetGradientSourceIncludesFixed())
{
itkExceptionMacro(
"Attempted to retrieve fixed image gradient from gradient image filter, "
"but GradientSource does not include 'fixed', and thus the gradient image has not been calculated.");
}
gradient = m_FixedImageGradientInterpolator->Evaluate(mappedPoint);
}
else
{
// if not using the gradient image
gradient = this->m_FixedImageGradientCalculator->Evaluate(mappedPoint);
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
ComputeMovingImageGradientAtPoint(const MovingImagePointType & mappedPoint, MovingImageGradientType & gradient) const
{
if (this->m_UseMovingImageGradientFilter)
{
if (!this->GetGradientSourceIncludesMoving())
{
itkExceptionMacro(
"Attempted to retrieve moving image gradient from gradient image filter, "
"but GradientSource does not include 'moving', and thus the gradient image has not been calculated.");
}
gradient = m_MovingImageGradientInterpolator->Evaluate(mappedPoint);
}
else
{
// if not using the gradient image
gradient = this->m_MovingImageGradientCalculator->Evaluate(mappedPoint);
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
ComputeFixedImageGradientFilterImage()
{
this->m_FixedImageGradientFilter->SetInput(this->m_FixedImage);
this->m_FixedImageGradientFilter->Update();
this->m_FixedImageGradientImage = this->m_FixedImageGradientFilter->GetOutput();
this->m_FixedImageGradientInterpolator->SetInputImage(this->m_FixedImageGradientImage);
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
ComputeMovingImageGradientFilterImage() const
{
this->m_MovingImageGradientFilter->SetInput(this->m_MovingImage);
this->m_MovingImageGradientFilter->Update();
this->m_MovingImageGradientImage = this->m_MovingImageGradientFilter->GetOutput();
this->m_MovingImageGradientInterpolator->SetInputImage(this->m_MovingImageGradientImage);
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
InitializeDefaultFixedImageGradientFilter()
{
const typename FixedImageType::SpacingType & spacing = this->m_FixedImage->GetSpacing();
double maximumSpacing = 0.0;
for (ImageDimensionType i = 0; i < FixedImageDimension; ++i)
{
if (spacing[i] > maximumSpacing)
{
maximumSpacing = spacing[i];
}
}
this->m_DefaultFixedImageGradientFilter->SetSigma(maximumSpacing);
this->m_DefaultFixedImageGradientFilter->SetNormalizeAcrossScale(true);
this->m_DefaultFixedImageGradientFilter->SetNumberOfWorkUnits(this->GetMaximumNumberOfWorkUnits());
this->m_DefaultFixedImageGradientFilter->SetUseImageDirection(true);
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
InitializeDefaultMovingImageGradientFilter()
{
const typename MovingImageType::SpacingType & spacing = this->m_MovingImage->GetSpacing();
double maximumSpacing = 0.0;
for (ImageDimensionType i = 0; i < MovingImageDimension; ++i)
{
if (spacing[i] > maximumSpacing)
{
maximumSpacing = spacing[i];
}
}
this->m_DefaultMovingImageGradientFilter->SetSigma(maximumSpacing);
this->m_DefaultMovingImageGradientFilter->SetNormalizeAcrossScale(true);
this->m_DefaultMovingImageGradientFilter->SetNumberOfWorkUnits(this->GetMaximumNumberOfWorkUnits());
this->m_DefaultMovingImageGradientFilter->SetUseImageDirection(true);
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
SetMaximumNumberOfWorkUnits(const ThreadIdType number)
{
if (number != this->m_SparseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads())
{
this->m_SparseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);
this->Modified();
}
if (number != this->m_DenseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads())
{
this->m_DenseGetValueAndDerivativeThreader->SetMaximumNumberOfThreads(number);
this->Modified();
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
ThreadIdType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetMaximumNumberOfWorkUnits() const
{
if (this->m_UseSampledPointSet)
{
return this->m_SparseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads();
}
return this->m_DenseGetValueAndDerivativeThreader->GetMaximumNumberOfThreads();
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
ThreadIdType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetNumberOfWorkUnitsUsed() const
{
if (this->m_UseSampledPointSet)
{
return this->m_SparseGetValueAndDerivativeThreader->GetNumberOfWorkUnitsUsed();
}
else
{
return this->m_DenseGetValueAndDerivativeThreader->GetNumberOfWorkUnitsUsed();
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
MapFixedSampledPointSetToVirtual()
{
this->m_VirtualSampledPointSet = VirtualPointSetType::New();
this->m_VirtualSampledPointSet->Initialize();
using PointsContainer = typename FixedSampledPointSetType::PointsContainer;
typename PointsContainer::ConstPointer points = this->m_FixedSampledPointSet->GetPoints();
if (points.IsNull())
{
itkExceptionMacro("Fixed Sample point set is empty.");
}
typename PointsContainer::ConstIterator fixedIt = points->Begin();
typename FixedTransformType::InverseTransformBasePointer inverseTransform =
this->m_FixedTransform->GetInverseTransform();
if (inverseTransform.IsNull())
{
itkExceptionMacro("Unable to get inverse transform for mapping sampled "
" point set.");
}
this->m_NumberOfSkippedFixedSampledPoints = 0;
SizeValueType virtualIndex = 0;
while (fixedIt != points->End())
{
typename FixedSampledPointSetType::PointType point = inverseTransform->TransformPoint(fixedIt.Value());
typename VirtualImageType::IndexType tempIndex;
/* Verify that the point is valid. We may be working with a resized virtual domain,
* and a fixed sampled point list that was created before the resizing. */
if (this->TransformPhysicalPointToVirtualIndex(point, tempIndex))
{
this->m_VirtualSampledPointSet->SetPoint(virtualIndex, point);
virtualIndex++;
}
else
{
this->m_NumberOfSkippedFixedSampledPoints++;
}
++fixedIt;
}
if (this->m_VirtualSampledPointSet->GetNumberOfPoints() == 0)
{
itkExceptionMacro("The virtual sampled point set has zero points because "
"no fixed sampled points were within the virtual "
"domain after mapping. There are no points to evaulate.");
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
SizeValueType
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::
GetNumberOfDomainPoints() const
{
if (this->m_UseSampledPointSet)
{
// The virtual sampled point set holds the actual points
// over which we're evaluating over.
return this->m_VirtualSampledPointSet->GetNumberOfPoints();
}
else
{
typename VirtualImageType::RegionType region = this->GetVirtualRegion();
return region.GetNumberOfPixels();
}
}
template <typename TFixedImage,
typename TMovingImage,
typename TVirtualImage,
typename TInternalComputationValueType,
typename TMetricTraits>
void
ImageToImageMetricv4<TFixedImage, TMovingImage, TVirtualImage, TInternalComputationValueType, TMetricTraits>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "ImageToImageMetricv4: " << std::endl
<< indent << "GetUseFixedImageGradientFilter: " << this->GetUseFixedImageGradientFilter() << std::endl
<< indent << "GetUseMovingImageGradientFilter: " << this->GetUseMovingImageGradientFilter() << std::endl
<< indent << "UseFloatingPointCorrection: " << this->GetUseFloatingPointCorrection() << std::endl
<< indent << "FloatingPointCorrectionResolution: " << this->GetFloatingPointCorrectionResolution() << std::endl;
itkPrintSelfObjectMacro(FixedImage);
itkPrintSelfObjectMacro(MovingImage);
itkPrintSelfObjectMacro(FixedTransform);
itkPrintSelfObjectMacro(MovingTransform);
itkPrintSelfObjectMacro(FixedImageMask);
itkPrintSelfObjectMacro(MovingImageMask);
}
} // namespace itk
#endif