forked from InsightSoftwareConsortium/ITK
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConnectedThresholdImageFilter.cxx
361 lines (303 loc) · 12.8 KB
/
ConnectedThresholdImageFilter.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput1.png}
// ARGUMENTS: 60 116 150 180
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput2.png}
// ARGUMENTS: 81 112 210 250
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput3.png}
// ARGUMENTS: 107 69 180 210
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The following example illustrates the use of the
// \doxygen{ConnectedThresholdImageFilter}. This filter uses the flood fill
// iterator. Most of the algorithmic complexity of a region growing method
// comes from visiting neighboring pixels. The flood fill iterator assumes
// this responsibility and greatly simplifies the implementation of the
// region growing algorithm. Thus the algorithm is left to establish a
// criterion to decide whether a particular pixel should be included in
// the current region or not.
//
// \index{itk::FloodFillIterator!In Region Growing}
// \index{itk::ConnectedThresholdImageFilter}
// \index{itk::ConnectedThresholdImageFilter!header}
//
// The criterion used by the \code{ConnectedThresholdImageFilter} is based on an
// interval of intensity values provided by the user. Lower and upper threshold
// values should be provided. The region-growing algorithm includes
// those pixels whose intensities are inside the interval.
//
// \begin{equation}
// I(\mathbf{X}) \in [ \mbox{lower}, \mbox{upper} ]
// \end{equation}
//
// Let's look at the minimal code required to use this algorithm. First, the
// following header defining the \code{ConnectedThresholdImageFilter} class
// must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkConnectedThresholdImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImage.h"
#include "itkCastImageFilter.h"
// Software Guide : BeginLatex
//
// Noise present in the image can reduce the capacity of this filter to grow
// large regions. When faced with noisy images, it is usually convenient to
// pre-process the image by using an edge-preserving smoothing filter. Any of
// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
// could be used to this end. In this particular example we use the
// \doxygen{CurvatureFlowImageFilter}, so we need to include its header
// file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCurvatureFlowImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int
main(int argc, char * argv[])
{
if (argc < 7)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage seedX seedY lowerThreshold upperThreshold"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We declare the image type based on a particular pixel type and
// dimension. In this case the \code{float} type is used for the pixels
// due to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
constexpr unsigned int Dimension = 2;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
// Software Guide : EndCodeSnippet
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using CastingFilterType = itk::CastImageFilter<InternalImageType, OutputImageType>;
CastingFilterType::Pointer caster = CastingFilterType::New();
// We instantiate reader and writer types
//
using ReaderType = itk::ImageFileReader<InternalImageType>;
using WriterType = itk::ImageFileWriter<OutputImageType>;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// Software Guide : BeginLatex
//
//
// The smoothing filter is instantiated using the image type as
// a template parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CurvatureFlowImageFilterType =
itk::CurvatureFlowImageFilter<InternalImageType, InternalImageType>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CurvatureFlowImageFilterType::Pointer smoothing = CurvatureFlowImageFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the region growing filter. In this case it is
// the \code{ConnectedThresholdImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ConnectedFilterType =
itk::ConnectedThresholdImageFilter<InternalImageType, InternalImageType>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ConnectedFilterType::Pointer connectedThreshold = ConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now it is time to connect a simple, linear pipeline. A file reader is
// added at the beginning of the pipeline and a cast filter and writer
// are added at the end. The cast filter is required to convert
// \code{float} pixel types to integer types since only a few image file
// formats support \code{float} types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput(reader->GetOutput());
connectedThreshold->SetInput(smoothing->GetOutput());
caster->SetInput(connectedThreshold->GetOutput());
writer->SetInput(caster->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{CurvatureFlowImageFilter} requires a couple of parameters.
// The following are typical values for $2D$ images. However, these
// values may have to be adjusted depending on the amount of noise present in
// the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now set the lower and upper threshold values. Any pixel whose value
// is between \code{lowerThreshold} and \code{upperThreshold} will be
// included in the region, and any pixel whose value is outside will be excluded.
// Setting these values too close together will be too restrictive
// for the region to grow; setting them too far apart will
// cause the region to engulf the image.
//
// \index{itk::ConnectedThresholdImageFilter!SetUpper()}
// \index{itk::ConnectedThresholdImageFilter!SetLower()}
//
// Software Guide : EndLatex
const InternalPixelType lowerThreshold = std::stod(argv[5]);
const InternalPixelType upperThreshold = std::stod(argv[6]);
// Software Guide : BeginCodeSnippet
connectedThreshold->SetLower(lowerThreshold);
connectedThreshold->SetUpper(upperThreshold);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this filter is a binary image with zero-value pixels
// everywhere except on the extracted region. The intensity value set
// inside the region is selected with the method \code{SetReplaceValue()}.
//
// \index{itk::ConnectedThresholdImageFilter!SetReplaceValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
connectedThreshold->SetReplaceValue(255);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The algorithm must be initialized by setting a seed point (i.e., the
// \doxygen{Index} of the pixel from which the region will grow) using the
// \code{SetSeed()} method. It is convenient to initialize with a point in a
// \emph{typical} region of the anatomical structure to be segmented.
//
// \index{itk::ConnectedThresholdImageFilter!SetSeed()}
//
// Software Guide : EndLatex
InternalImageType::IndexType index;
index[0] = std::stoi(argv[3]);
index[1] = std::stoi(argv[4]);
// Software Guide : BeginCodeSnippet
connectedThreshold->SetSeed(index);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Invocation of the \code{Update()} method on the writer triggers
// execution of the pipeline. It is usually wise to put update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Let's run this example using as input the image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations and defining
// values for the lower and upper thresholds.
// Figure~\ref{fig:ConnectedThresholdOutput} illustrates several examples of
// segmentation. The parameters used are presented in
// Table~\ref{tab:ConnectedThresholdOutput}.
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|}
// \hline
// Structure & Seed Index & Lower & Upper & Output Image \\ \hline
// White matter & $(60,116)$ & 150 & 180 & Second from left in Figure
// \ref{fig:ConnectedThresholdOutput} \\ \hline Ventricle & $(81,112)$ & 210 & 250
// & Third from left in Figure \ref{fig:ConnectedThresholdOutput} \\ \hline Gray
// matter & $(107,69)$ & 180 & 210 & Fourth from left in Figure
// \ref{fig:ConnectedThresholdOutput} \\ \hline \end{tabular} \end{center}
// \itkcaption[ConnectedThreshold example parameters]{Parameters used for
// segmenting some brain structures shown in
// Figure~\ref{fig:ConnectedThresholdOutput} with the filter
// \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}}
// \end{table}
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput1}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput2}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput3}
// \itkcaption[ConnectedThreshold segmentation results]{Segmentation results
// for the ConnectedThreshold filter for various seed points.}
// \label{fig:ConnectedThresholdOutput}
// \end{figure}
//
// Notice that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the region-growing methods when the
// anatomical structures to be segmented do not have a homogeneous
// statistical distribution over the image space. You may want to
// experiment with different values of the lower and upper thresholds to
// verify how the accepted region will extend.
//
// Another option for segmenting regions is to take advantage of the
// functionality provided by the \code{ConnectedThresholdImageFilter} for
// managing multiple seeds. The seeds can be passed one-by-one to the
// filter using the \code{AddSeed()} method. You could imagine a user
// interface in which an operator clicks on multiple points of the object
// to be segmented and each selected point is passed as a seed to this
// filter.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}