Skip to content

Novel deep learning model for more accurate prediction of drug-drug interaction effects

Notifications You must be signed in to change notification settings

thisishe/predict_ddi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Novel deep learning model for more accurate prediction of drug-drug interaction effects

We introduce a deep learning model for prediction of drug-drug interaction effects accurately.

This model is composed of three autoencoders and a deep feed-forward neural network.

The features used for training the model are structural similarity profile (SSP), target gene similarity profile (TSP) and gene ontology similarity profile (GSP).

For more details, please refer to here

Python library requirements

python=3.6.8

pytorch=1.4.0

jupyter=1.0.0

scikit-learn=0.22.2

pandas=1.0.3

openbabel=2.4.1

Example

	cd predict_ddi/src
	python run.py
  • model_evaluation.ipynb : Calculation of accuracy, macro recall, macro precision, micro recall, micro precision of trained model.
  • structural_similarity_example.ipynb : Example of computing structural similarity using openbabel library. (trained model is necessary for implementation)

If you need trained model, visit here

About

Novel deep learning model for more accurate prediction of drug-drug interaction effects

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published