This is our implementation for Multi-Objective Optimization for Neural Architecture Search Problem
Python >= 3.6.8, PyTorch >= 1.5.1, torchvision >= 0.6.1, pymoo == 0.5.0, nats-bench
To run architecture search:
python main.py --dataset cifar10 --pop_size 200 --n_gens 250 --n_offspring 20
To visualize the architectures:
python misc/visualize.py --dataset cifar10 --type graph
Remember to update your projecty root path before running
CIFAR-10 | CIFAR-100 | ImageNet-16 | |
---|---|---|---|
IGD | 0.004 | 0.03 | 0.03 |
CIFAR-10 | CIFAR-100 | ImageNet-16-120 |
---|---|---|