Code Contributor: Kaixin Liu
If you have any questions, feel free to contact me. My email is lkx17@mails.tsinghua.edu.cn.
Please cite our paper if you choose to use our code.
@inproceedings{DBLP:conf/dasfaa/LiuZX20b,
author = {Kaixin Liu and
Yong Zhang and
Chunxiao Xing},
editor = {Yunmook Nah and
Bin Cui and
Sang{-}Won Lee and
Jeffrey Xu Yu and
Yang{-}Sae Moon and
Steven Euijong Whang},
title = {An Efficient Approximate Algorithm for Single-Source Discounted Hitting
Time Query},
booktitle = {Database Systems for Advanced Applications - 25th International Conference,
{DASFAA} 2020, Jeju, South Korea, September 24-27, 2020, Proceedings,
Part {III}},
series = {Lecture Notes in Computer Science},
volume = {12114},
pages = {237--254},
publisher = {Springer},
year = {2020},
url = {https://doi.org/10.1007/978-3-030-59419-0\_15},
doi = {10.1007/978-3-030-59419-0\_15},
timestamp = {Fri, 25 Sep 2020 12:46:11 +0200},
biburl = {https://dblp.org/rec/conf/dasfaa/LiuZX20b.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
- Ubuntu
- C++ 11
- GCC 4.8
- Boost
- cmake
$ cmake .
$ make
./fbrw action_name --algo <algorithm> [options]
- action:
- query
- topk
- generate-ss-query: generate queries file
- gen-exact-topk: generate ground truth by power-iterations method
- gen-exact-self: generate ground truth by backward propagation
- algo: which algorithm you prefer to run
- montecarlo: Monte Carlo
- dne: Dynamic neighborhood expansion
- fora_bippr: Fora and bippr
- fbrw: FBRW
- options
- --prefix <prefix>
- --epsilon <epsilon>
- --dataset <dataset>
- --query_size <queries count>
- --k <top k>
- --exact_ppr_path <directory to place generated ground truth>
- --result_dir <directory to place results>
The data for DBLP, Pokec, Livejournal, Twitter are not included here for size limitation reason. You can find them online.
Generate query files for the graph data. Each line contains a node id.
$ ./fbrw generate-ss-query --prefix <data-folder> --dataset <graph-name> --query_size <query count>
- Example:
$ ./fbrw generate-ss-query --prefix ./data/ --dataset pokec --query_size 500
Process queries.
$ ./fbrw query --algo <algo-name> --prefix <data-folder> --dataset <graph-name> --result_dir <output-folder> --epsilon <relative error> --query_size <query count>
- Example:
$ ./fbrw query --algo fbrw --prefix ./data/ --dataset pokec --epsilon 0.5 --query_size 20
Process top-k queries.
$ ./fbrw topk --algo <algo-name> --prefix <data-folder> --dataset <graph-name> --result_dir <output-folder> --epsilon <relative error> --query_size <query count> --k <k>
- Example
$ ./fbrw topk --algo fbrw --prefix ./data/ --dataset pokec --epsilon 0.5 --query_size 20 --k 500
Construct ground truth for the generated queries.
$ ./fbrw gen-exact-topk --prefix <data-folder> --dataset <graph-name> --k <k> --query_size <query count> --exact_ppr_path <folder to save exact ppr>
$ ./fbrw gen-exact-self --prefix <data-folder> --dataset <graph-name> --k <k> --query_size <query count> --exact_ppr_path <folder to save exact ppr>
- Example
$ mkdir ./exact
$ ./fbrw gen-exact-topk --prefix ./data/ --dataset pokec --k 500 --query_size 100 --exact_ppr_path ./exact/
$ ./fbrw gen-exact-self --prefix ./data/ --dataset pokec --k 500 --query_size 100 --exact_ppr_path ./exact/