Skip to content
/ NSA Public

Code for ''Understanding and Exploring the Network with Stochastic Architectures''

Notifications You must be signed in to change notification settings

thudzj/NSA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch implementation for Understanding and Exploring the Network with Stochastic Architectures, Zhijie Deng, Yinpeng Dong, Shifeng Zhang, and Jun Zhu (NeurIPS 2020)

Usage

Dependencies

  • python 3
  • torch 1.4.0
  • torchvision

Scripts for training and evaluating NSA as well as baselines:

Vanilla NSA:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --droppath_rate 0. --num_ensemble 100 --decay 5e-4 --arch_seed_start 1 --arch_seed_end 5 --arch_p 0.7 --aux --aux_weight 0.1 --job-id snet-1_5-r-p0.7-aux0.1-long-bn-noaggr-ba --use_bn --batch_arch

NSA-i:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --droppath_rate 0. --num_ensemble 100 --decay 5e-4 --arch_seed_start 1 --arch_seed_end 5 --arch_p 0.7 --aux --aux_weight 0.1 --job-id snet-1_5-r-p0.7-aux0.1-long-bn-noaggr --use_bn

NSA-id (only aggr)

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --droppath_rate 0. --num_ensemble 100 --decay 5e-4 --learn_aggr --arch_seed_start 1 --arch_seed_end 5 --arch_p 0.7 --aux --aux_weight 0.1 --job-id snet-1_5-r-p0.7-aux0.1-long-bn --use_bn

NSA-id:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --droppath_rate 0. --num_ensemble 100 --decay 5e-4 --learn_aggr --arch_seed_start 1 --arch_seed_end 5 --arch_p 0.7 --aux --aux_weight 0.1 --job-id snet-1_5-r-p0.7-aux0.1-long

Wide resnet 28-10 in our implementation:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --dropout_rate 0. --num_ensemble 1 --decay 5e-4 --learn_aggr --arch_type residual --aux --aux_weight 0.1 --job-id resnet-r-aux0.1-long

Wide resnet 28-10 with MC dropout:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --dropout_rate 0.2 --num_ensemble 100 --decay 5e-4 --learn_aggr --arch_type residual --aux --aux_weight 0.1 --job-id resnet-r-aux0.1-dp0.2-long

Individual training:

python main_s.py --arch wrn_r --epochs 300 --schedule 90 180 240 --droppath_rate 0. --num_ensemble 100 --decay 5e-4 --learn_aggr --arch_seed_start 1 --arch_seed_end 1 --arch_p 0.7 --aux --aux_weight 0.1 --job-id snet-1_1-r-p0.7-aux0.1-long

Contact and cooperate

If you have any problem about this library or want to contribute to it, please send us an Email at:

Cite

Please cite our paper if you use this code in your own work:

PlaceHolder

About

Code for ''Understanding and Exploring the Network with Stochastic Architectures''

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages