Skip to content
/ cmr Public
forked from akanazawa/cmr

Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

License

Notifications You must be signed in to change notification settings

thusiyuan/cmr

 
 

Repository files navigation

Learning Category-Specific Mesh Reconstruction from Image Collections

Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik

University of California, Berkeley In ECCV, 2018

Project Page Teaser Image

Requirements

  • Python 2.7
  • PyTorch tested on version 0.3.0.post4

Installation

Setup virtualenv

virtualenv venv_cmr
source venv_cmr/bin/activate
pip install -U pip
deactivate
source venv_cmr/bin/activate
pip install -r requirements.txt

Install Neural Mesh Renderer and Perceptual loss

cd external;
bash install_external.sh

Demo

  1. From the cmr directory, download the trained model:
wget https://people.eecs.berkeley.edu/~kanazawa/cachedir/cmr/model.tar.gz & tar -vzxf model.tar.gz

You should see cmr/cachedir/snapshots/bird_net/

  1. Run the demo:
python -m cmr.demo --name bird_net --num_train_epoch 500 --img_path cmr/demo_data/img1.jpg
python -m cmr.demo --name bird_net --num_train_epoch 500 --img_path cmr/demo_data/birdie.jpg

Training

Please see doc/train.md

Citation

If you use this code for your research, please consider citing:

@inProceedings{cmrKanazawa18,
  title={Learning Category-Specific Mesh Reconstruction
  from Image Collections},
  author = {Angjoo Kanazawa and
  Shubham Tulsiani
  and Alexei A. Efros
  and Jitendra Malik},
  booktitle={ECCV},
  year={2018}
}

About

Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.5%
  • MATLAB 8.3%
  • Shell 0.2%