-
Notifications
You must be signed in to change notification settings - Fork 0
/
runtests.jl
136 lines (105 loc) · 4.57 KB
/
runtests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
using Test
using Unitful, UnitfulMR
using MRphy
using MRphy.utils
@time begin
@testset "utils tests" for _ = [1]
dim, k = (2,2), [1,2,3,4,0]u"cm^-1"
gT, gR = k2g(k, true), k2g(k, false)
@test CartesianLocations(dim) ==
CartesianLocations(dim,false) .- collect(Tuple(ctrSub(dim)))' ==
[-1 -1; 0 -1; -1 0; 0 0];
@test ctrSub((1,2,3,4,5,6)) == CartesianIndex(1,2,2,3,3,4)
@test ctrInd.([(3,4), (4,3)]) == [8, 7] # center index of fftshift
@test g2k(gT, true) ≈ k && k2g(k, false) ≈ gR # `≈` in case of numeric errors
@test g2s(gT, dt=1u"s") ≈
([gT[1]; diff(gT, dims=1)]/1u"s")::TypeND(SL0D,[ndims(gT)])
end
@testset "SteadyStates tests" for _ = [1]
using MRphy.SteadyStates
(α, β, ϕ) = (15, 15, 0);
(Tg, Tf) = ((2e-3)u"s", (1e-2)u"s")
(TR, Δf, T1, T2) = (2e-2u"s", 0u"Hz", 1u"s", (6e-2)u"s") # α in degree
@test Signal.bSSFP(α; TR=TR, Δf=Δf, T1=T1, T2=T2) ≈ 0.0808
@test Signal.SPGR(α; TR=TR, T1=T1) ≈ 0.096332419
@test Signal.STFR(α,β; ϕ=ϕ,T1=T1,T2=T2,Tg=Tg,Tf=Tf,Δf=Δf) ≈ 0.13935003382
@test RFSpoiling.QuadPhase(3, 2) == [0, 2, 8]
C = collect(range(0; stop=90, length=2))
Φ = C[:].*([1:2...]'.^2/2);
FZ = RFSpoiling.FZstates(Φ, α; TR=TR, T1=T1, T2=T2)
@test FZ.Fs ≈
[( 0.0 -0.1769001765im) ( 0.0 -0.1289001842im);
( 0.0 +0.1769001765im) ( 0.0911461943 -0.0911461943im)]
@test FZ.Fcs ≈
[( 0.0 +0.1769001765im) ( 0.0 -0.0022341470im);
( 0.0 -0.1769001765im) ( 0.0015797805 -0.0015797805im)]
@test FZ.Zs ≈
[( 0.9336644254 +0.0im) (-0.0239992483 +0.0im);
( 0.9336644254 +0.0im) ( 0.0169700312 +0.0169700312im)]
end
#= Core Features Tests =#
M0, nt = [1. 0. 0.; 0. 1. 0.; 0. 0. 1.], 512
nM_spa, t = size(M0,1), 0:nt-1
fov = [3 3 1]u"cm"
γ = γ¹H
γ_unitless = ustrip(Float64, u"Hz/Gauss",γ)
rf = (10*(cos.(t/nt*2π) + sin.(t/nt*2π)im))u"Gauss"
gr = [ones(nt) zeros(nt) (10*atan.(t.-round(nt/2))/π)]u"Gauss/cm"
dt, des = 4e-6u"s", "test pulse"
p = Pulse(copy(rf); dt=copy(dt), des=des)
p.gr = gr; # split here to hit `setproperty!` for coverage
spa = mSpinArray(trues((nM_spa,1)); γ=copy(γ), M=copy(M0))
cube = mSpinCube(trues((3,3,1)), fov)
cube.Δf = 0u"Hz"
@testset "mObjects tests" for _ = [1] # setting _ = [1] shuts down this testset
@testset "`AbstractPulse` constructor" for _ = [1]
@test isequal(p, Pulse(copy(p.rf), copy(p.gr); dt=copy(dt),des=des))
@test p != Pulse(copy(p.rf), copy(p.gr); dt=copy(dt),des=des)
end
@testset "`AbstractSpinArray` constructor" for _ = [1]
@test isequal(spa, mSpinArray(copy(spa.mask); M=copy(spa.M)))
@test isequal(spa, mSpinArray(size(spa); M=copy(spa.M)))
@test isequal(size(spa, 1), size(spa)[1])
end
@testset "`AbstractSpnCube` constructor" for _ = [1]
@test isequal(cube, mSpinCube(copy(cube.mask), fov))
@test isequal(cube, mSpinCube(size(cube), fov))
@test_throws ArgumentError cube.fov = fov # cube.fov should be immutable
end
end
spa.T1, spa.T2 = 1u"s", 4e-2u"s"
b1Map = 1
loc_x = collect(range(-1., 1.; length=nM_spa))u"cm"
loc_y, loc_z = zeros(3)u"cm", ones(3)u"cm"
loc = [loc_x loc_y loc_z]
Δf = -(ustrip.(loc_x))u"Hz" .* γ_unitless # w/ gr_x==1u"Gauss/cm", cancels Δf
t_fp = (1/4/γ_unitless)u"s"
@testset "blochSim tests" for _ = [1] # setting _ = [] shuts down this testset
Mo1, _ = applyPulse!(spa, p, loc; Δf=Δf, b1Map=b1Map, doHist=false)
Mo1 = copy(Mo1)
spa.M .= copy(M0)
Mo, _ = applyPulse(spa, p, loc; Δf=Δf, b1Map=b1Map, doHist=false)
Beff = cat(Pulse2B(p, loc; Δf=Δf, b1Map=b1Map, γ=spa.γ)...; dims=3)
@test Beff == cat(rfgr2B(p.rf, p.gr, loc; Δf=Δf, b1Map=b1Map, γ=spa.γ)...;
dims=3)
A, B = B2AB(Beff; T1=spa.T1, T2=spa.T2, γ=spa.γ, dt=p.dt)
_, Mhst = blochSim(M0,Beff; T1=spa.T1,T2=spa.T2,γ=spa.γ,dt=p.dt,doHist=true);
X = copy(M0)
blochSim!(X, Beff; T1=spa.T1,T2=spa.T2,γ=spa.γ,dt=p.dt,doHist=true);
MoAB = blochSim(M0, A, B)
@test Mo ≈ Mo1 ≈ Mhst[:,:,end] ≈ MoAB ≈ X ≈
[ 0.559535641648385 0.663342640621335 0.416341441715101;
0.391994737048090 0.210182892388552 -0.860954821972489;
-0.677062008711222 0.673391604920576 -0.143262993311057]
E1, E2, eΔθ = exp.(-t_fp./spa.T1), exp.(-t_fp./spa.T2), exp.(-1im*2π*Δf*t_fp)
M0f = copy(M0)
M0f[:,1:2] .*= E2
M0f[:,3] .*= E1
M0f[:,3] .+= (1-E1)
M0f[:,1:2] .= eΔθ.*(M0f[:,1]+1im*M0f[:,2]) |> x->[real(x) imag(x)]
M_fp = copy(freePrec!(spa, t_fp; Δf=Δf))
spa.M .= copy(M0)
@test M_fp ≈ freePrec(spa, t_fp; Δf=Δf) ≈ M0f
spa.M .= copy(M0)
end
end