- preview for alpha test (so far only for internal use, updates will follow)
Creation of an updated mouse gut gene catalog
- MAGs representing n species
- more diverse samples from new studies (~n) and public studies (~n)
- integrated isolated species
- improved pipelines
- The data is still protected at the moment, we will change this as soon as possible.
Description | Size | Link |
---|---|---|
representative mMAGs (n=#,###) | # GB | iMGMCv2-mMAGs-dereplicated_genomes.tar.gz |
representative hqMAGs (n=#,###) | # GB | iMGMCv2-hqMAGs-dereplicated_genomes.tar.gz |
all mMAGs (n=###,###) | ## GB | iMGMCv2-mMAGs.tar.gz |
Annotations by CheckM, dRep-Clustering, GTDB-Tk | # MB | MAG-annotation_CheckM_dRep_GTDB-Tk.tar.gz |
Functional annotations (hqMAGs by eggNOG mapper v2) | ### MB | hqMAGs.emapper.annotations.gz |
preprocess mapping-index | ## GB | hqMAGs.emapper.annotations.gz |
1. We recommend the use of Bioconda eg create bioconda environment with bwa2 and bbmap with:
conda create -n iMGMCv2 bwa2 bbmap
conda activate iMGMCv2
download [iMGMCv2-DU6.tar.gz](https://1drv.ms/f/s!Am-fED1L6602hcVH65QUhQZse5vOzA)
tar -xzf iMGMCv2-DU6.tar.gz
download [iMGMCv2-DU6-mMAGs.fasta.gz](https://1drv.ms/f/s!Am-fED1L6602hcVH65QUhQZse5vOzA)
gzip -d iMGMCv2-DU6-mMAGs.fasta.gz
bwa-mem2 index iMGMCv2-DU6-mMAGs.fasta
Cores=24 # please check your server
RefFasta=DU6.fasta # bwa2 index
FastqPathR1=/path/to/file/R1 # set path to read 1
FastqPathR2=/path/to/file/R2 # set path to read 2
SampleName=MySampleName # create name for the samples
bwa-mem2 mem -t ${Cores} ${RefFasta} ${FastqPathR1} ${FastqPathR2} | pigz --fast > /tmp/${SampleName}.sam.gz
pileup.sh in=/tmp/${SampleName}.sam.gz covstats=${SampleName}.covstats 32bit=t 2> ${SampleName}.log
rm /tmp/${SampleName}.sam.gz
bwa-mem2 mem -t ${Cores} ${RefFasta} ${FastqPathR1} ${FastqPathR2} | \
pileup.sh in=stdin.sam covstats=${SampleName}.covstats 32bit=t 2> ${SampleName}.log
bash TPM-Script ${SampleName}.covstats # create TPM-${SampleName}.txt
bash create-abundance-table.sh # summarizing all Samples into one matrix file
We are using a close reference profiling, so we can join other samples to the abundance-table. This make it easy to analyze your samples in a bigger context.
YourTable=abundance-table.txt # table form step before
OtherTable=other-abundance-table.txt # another table
SampleList=RefSamplesMircobiotas.txt # File with names of samples you want to join (alternative all)
bash add-samples.sh ${YourTable} ${RunTable} ${SampleList} # add selected samples
bash add-samples.sh ${YourTable} ${RunTable} # add all samples
First create a mapping files with all needed samples and the metadata (like a simple group):
Sample Factor Trt1 Treatment Trt2 Treatment Trt3 Treatment Con1 Control Con2 Control Con3 Control
This data can used for downstream processing like ploting in R:
See our paper for details.
An integrated metagenome catalog enables new insights into the murine gut microbiome
Till R. Lesker, Abilash C. Durairaj, Eric. J.C. Gálvez, Ilias Lagkouvardos, John F. Baines, Thomas Clavel, Alexander Sczyrba, Alice C. McHardy, Till Strowig. Cell reports 30, no. 9 (2020): 2909-2922.
https://doi.org/10.1016/j.celrep.2020.02.036