Skip to content

tmylla/NER_ZH

Repository files navigation

目录

简介

安装

目录结构

模型介绍

运行方式

参考

简介

使用PyTorch实现中文NER模型,拟提供BERT_BiLSTM_CRF、BiLSTM_CRF、CRF和HMM四种模型,目前实现BERT_BiLSTM_CRF。

安装

tqdm==4.62.2
torch==1.8.2+cu102
transformers==4.11.3
torchcrf==1.1.0

目录结构

NER_ZH
├── ckpts
│    ├── bert-base-chinese  # 预训练模型BERT
│    ├── bert_bilstm_crf    # 自己训练的bert_bilstm_crf模型
│    ├── ...
├── data  # 数据集
│    ├── test.txt
│    ├── train.txt
│    ├── ...
├── logs  # 训练日志
│    ├── bert_bilstm_crf.log  # bert_bilstm_crf训练测试日志
├── output  # 预测结果、可视乎结果等
├── config.py
├── dataloader.py
├── evaluator.py
├── main.py
├── models.py
├── trainer.py
├── utils.py

模型介绍

BERT_BiLSTM_CRF

"""
1. BERT:
	outputs = self.bert(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=input_mask)
    sequence_output = outputs[0]

    Inputs:
        input_ids:      torch.Size([batch_size,seq_len]), 代表输入实例的tensor张量
        token_type_ids: torch.Size([batch_size,seq_len]), 一个实例可以含有两个句子,相当于标记
        attention_mask: torch.Size([batch_size,seq_len]), 指定对哪些词进行self-Attention操作
    Out:
        sequence_output: torch.Size([batch_size,seq_len,hidden_size]), 输出序列
        pooled_output:   torch.Size([batch_size,hidden_size]), 对输出序列进行pool操作的结果
        (hidden_states): tuple, 13*torch.Size([batch_size,seq_len,hidden_size]), 隐藏层状态,取决于config的output_hidden_states
        (attentions):    tuple, 12*torch.Size([batch_size, 12, seq_len, seq_len]), 注意力层,取决于config中的output_attentions
        
       
2. BiLSTM:
	self.birnn = nn.LSTM(input_size=config.hidden_size, hidden_size=rnn_dim, num_layers=1, bidirectional=True, batch_first=True)
	Args:
		input_size:    输入数据的特征维数
		hidden_size:   LSTM中隐层的维度
        num_layers:    循环神经网络的层数
        bias:          用不用偏置,default=True
        batch_first:   通常我们输入的数据shape=(batch_size,seq_length,input_size),而batch_first默认是False,需要将batch_size与seq_length调换
        dropout:       默认是0,代表不用dropout
        bidirectional: 默认是false,代表不用双向LSTM

	sequence_output, _ = self.birnn(sequence_output)
    Inputs:
		input:shape=(seq_length,batch_size,input_size)的张量
        (h_0,c_0): h_0.shape=(num_directions*num_layers, batch, hidden_size),它包含了在当前这个batch_size中每个句子的初始隐藏状态;num_layers就是LSTM的层数,如果bidirectional=True,num_directions=2,否则就是1,表示只有一个方向,c_0和h_0的形状相同,它包含的是在当前这个batch_size中的每个句子的初始状态,h_0、c_0如果不提供,那么默认是0
		OutPuts:
        output:shape=(seq_length,batch_size,num_directions*hidden_size), 它包含LSTM的最后一层的输出特征(h_t)
        (h_n,c_n): h_n.shape=(num_directions*num_layers, batch, hidden_size), c_n与h_n形状相同, h_n包含的是句子的最后一个单词的隐藏状态;c_n包含的是句子的最后一个单词的细胞状态,所以它们都与句子的长度seq_length无关;output[-1]与h_n是相等的,因为output[-1]包含的正是batch_size个句子中每一个句子的最后一个单词的隐藏状态,注意LSTM中的隐藏状态其实就是输出,cell state细胞状态才是LSTM中一直隐藏的,记录着信息


3. 全连接层:
	self.hidden2tag = nn.Linear(in_features=out_dim, out_features=config.num_labels)
	Args:
		in_features:  输入的二维张量的大小,即输入的[batch_size, size]中的size
		out_features: 输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size],当然,它也代表了该全连接层的神经元个数

	释义:
		从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]的张量变换成了[batch_size, out_features]的输出张量


4. CRF:
    self.crf = CRF(num_tags=config.num_labels, batch_first=True)
    Args:
        num_tags:Number of tags.
        batch_first: Whether the first dimension corresponds to the size of a minibatch.

    loss = -1 * self.crf(emissions, tags, mask=input_mask.byte())
    Inputs:
        emissions (`~torch.Tensor`): Emission score tensor of size``(seq_length, batch_size, num_tags)`` if ``batch_first`` is ``False``,``(batch_size, seq_length, num_tags)`` otherwise.
        tags (`~torch.LongTensor`): Sequence of tags tensor of size``(seq_length, batch_size)`` if ``batch_first`` is ``False``,``(batch_size, seq_length)`` otherwise.
        mask (`~torch.ByteTensor`): Mask tensor of size ``(seq_length, batch_size)``if ``batch_first`` is ``False``, ``(batch_size, seq_length)`` otherwise.
        reduction: Specifies  the reduction to apply to the output:``none|sum|mean|token_mean``. ``none``: no reduction will be applied; ``sum``: the output will be summed over batches; ``mean``: the output will be averaged over batches; ``token_mean``: the output will be averaged over tokens.

    Returns:
    `~torch.Tensor`: The log likelihood. This will have size ``(batch_size,)`` if reduction is ``none``, ``()`` otherwise.
"""

模型评估

  • 精确率P、召回率R以及F1值

    $P=\frac{TP}{TP+FP}$

    $R=\frac{TP}{TP+FN}$

    $F1=\frac{2PR}{P+R}$

    • '''
      通过'evaluator.py'计算每个标签的精确率、召回率和F1分数,输出如下格式:
                 precision    recall  f1-score   support
              O     0.9999    0.9999    0.9999    150935
          I-ORG     0.9984    0.9991    0.9988      5640
          I-LOC     0.9968    0.9970    0.9969      4370
          B-ORG     0.9955    0.9985    0.9970      1327
          I-PER     1.0000    0.9995    0.9997      3845
          B-LOC     0.9990    0.9962    0.9976      2871
          B-PER     0.9995    1.0000    0.9997      1972
      avg/total     0.9997    0.9997    0.9997    170960
      '''
    • 由于标签中 “O”占非常大的比例,因此在计算指标时,采用两种方式:一是直接计算所有的指标,二是去掉“O”这个类别后再计算所有指标。修改config.py中的self.remove_O = False/True实现不同计算方式。

  • 混淆矩阵

    • '''
      Confusion Matrix:
                  O   I-ORG   I-LOC   B-ORG   I-PER   B-LOC   B-PER 
          O  150921       6       7       1       0       0       0 
      I-ORG       1    5635       0       4       0       0       0 
      I-LOC       8       2    4357       0       0       3       0 
      B-ORG       1       1       0    1325       0       0       0 
      I-PER       1       0       0       0    3843       0       1 
      B-LOC       3       0       7       1       0    2860       0 
      B-PER       0       0       0       0       0       0    1972 
      '''

运行方式

根据需要自行设置config.py文件参数,然后运行main.py文件即可。

参考

  1. bert_bilstm_crf_ner_pytorch
  2. named_entity_recognition

About

中文命名实体识别

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages