Skip to content

Graph transformation for metastable Markov chains

License

Notifications You must be signed in to change notification settings

tomswinburne/PyGT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyGT : Graph transformation and reduction in Python

Tom Swinburne, CNRS-CINaM, thomas dor swinburne at cnrs.fr

Deepti Kannan, Wales Group, Cambridge, dk588 at cam.ac.uk

v0.3.0 ©️ TD Swinburne and D Kannan 2020

Quick installation

pip install PyGT

If this looks unfamiliar, please see below

Beta version of code used in the following papers : T.D. Swinburne and D.J. Wales, Defining, Calculating, and Converging Observables of a Kinetic Transition Network, J. Chemical Theory and Computation (2020), link

T.D. Swinburne, D. Kannan, D.J. Sharpe and D.J. Wales, Rare Events and First Passage Time Statistics From the Energy Landscape, Submitted to J. Chemical Physics (2020)

More functionality will be added soon.

Documentation and online examples

  • Example notebooks can be run online with binder: Binder

  • Please see full documentation at readthedocs

Recommended installation with pip

  • We recommend using a virtualenv with e.g. conda-
	conda create --name PyGTenv python=3.5
	conda activate PyGTenv
  • One can then safely install PyGT using pip with
	pip install PyGT

Run the examples locally

  • Install jupyter notebook if required, inside the same virtualenv
	conda install -c conda-forge notebook
  • Open the example notebook
  cd examples
  jupyter-notebook basic_functions.ipynb

About

Graph transformation for metastable Markov chains

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages