Skip to content
/ sttp Public

Spectral Tensor Train Parameterization of Deep Learning Layers

License

Notifications You must be signed in to change notification settings

toshas/sttp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spectral Tensor Train Parameterization of Deep Learning Layers

This repository is the official implementation of our AISTATS 2021 paper titled "Spectral Tensor Train Parameterization of Deep Learning Layers" by Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis, Dengxin Dai, and Luc Van Gool [arXiv] [PMLR].

It demonstrates how to perform low-rank neural network reparameterization and its stable training in a compressed form. The code provides all experiments (GAN and Image Classification) from the paper (see configs/aistats21 directory) with the following types of reparameterizations: SNGAN, SRGAN, SVDP, or STTP.

STTP teaser

Installation

All experiments can be reproduced on a single 11Gb GPU.

Clone the repository, then create a new virtual environment, and install python dependencies into it:

python3 -m venv venv_sttp
source venv_sttp/bin/activate
pip3 install --upgrade pip
pip3 install -r requirements.txt

In case of problems with generic requirements, fall back to requirements_reproducibility.txt.

Logging

The code performs logging to the console, tensorboard file in the experiment log directory, and also Weights and Biases (wandb). Upon the first run, please enter your wandb credentials, which can be obtained by registering a free account with the service.

Creating Environment Config

The training script allows specifying multiple yml config files, which will be concatenated during execution. This is done to separate experiment configs from environment configs. To start running experiments, create your own config file with a few environment settings, similar to configs/env_lsf.yml. Generally, you only need to update paths; see other fields explained in the config reference.

Training

Choose a preconfigured experiment from any of the configs/aistats21 directories, or compose your own config using the config reference, and run the following command:

CUDA_VISIBLE_DEVICES=0 python -m src.train --cfg configs/env_yours.yml --cfg configs/experiment.yml

Poster

STTP poster

Citation

Please cite our work if you found it useful:

@InProceedings{obukhov2021spectral,
  title={Spectral Tensor Train Parameterization of Deep Learning Layers},
  author={Obukhov, Anton and Rakhuba, Maxim and Liniger, Alexander and Huang, Zhiwu and Georgoulis, Stamatios and Dai, Dengxin and Van Gool, Luc},
  booktitle={Proceedings of The 24th International Conference on Artificial Intelligence and Statistics},
  pages={3547--3555},
  year={2021},
  editor={Banerjee, Arindam and Fukumizu, Kenji},
  volume={130},
  series={Proceedings of Machine Learning Research},
  month={13--15 Apr},
  publisher={PMLR},
  pdf={http://proceedings.mlr.press/v130/obukhov21a/obukhov21a.pdf},
  url={http://proceedings.mlr.press/v130/obukhov21a.html}
}

License

This software is released under a CC-BY-NC 4.0 license, which allows personal and research use only. For a commercial license, please contact the authors. You can view a license summary here.

Portions of source code taken from external sources are annotated with links to original files and their corresponding licenses.

Acknowledgements

This work was supported by Toyota Motor Europe and was carried out at the TRACE Lab at ETH Zurich (Toyota Research on Automated Cars in Europe - Zurich).