Skip to content

This project shows a real world use case with ETL batch pipeline using Cloud Storage, Dataflow and BigQuery orchestrated by Cloud Composer / Airflow

Notifications You must be signed in to change notification settings

tosun-si/teams-league-airflow-dataflow-etl

Repository files navigation

teams-league-airflow-cloudrun-etl

This project shows a real world use case with ETL batch pipeline using Cloud Storage, Dataflow and BigQuery orchestrated by Cloud Composer / Airflow

etl_batch_pipeline_composer_dataflow_bq.png

The article on this topic :

https://medium.com/google-cloud/etl-batch-pipeline-with-cloud-storage-dataflow-and-bigquery-orchestrated-by-airflow-composer-896625aed586

The video in English :

https://youtu.be/Ps6zllstpVk

The video in French :

https://youtu.be/QcQxEbRjo5o

Run job with Dataflow runner from local machine :

python -m team_league.application.team_league_app \
    --project=gb-poc-373711 \
    --project_id=gb-poc-373711 \
    --input_json_file=gs://mazlum_dev/team_league/input/json/input_teams_stats_raw.json \
    --job_name=team-league-python-job-$(date +'%Y-%m-%d-%H-%M-%S') \
    --runner=DataflowRunner \
    --staging_location=gs://mazlum_dev/dataflow/staging \
    --region=europe-west1 \
    --setup_file=./setup.py \
    --temp_location=gs://mazlum_dev/dataflow/temp \
    --team_league_dataset="mazlum_test" \
    --team_stats_table="team_stat"

Set env vars in your Shell

# Common
export PROJECT_ID={{your_project_id}}
export LOCATION={{your_location}}

# Dataflow (deployment Flex Template)
export REPO_NAME=internal-images
export IMAGE_NAME="dataflow/team-league-elt-dataflow-python"
export IMAGE_TAG=latest
export METADATA_FILE="config/dataflow_template_metadata.json"
export METADATA_TEMPLATE_FILE_PATH="gs://mazlum_dev/dataflow/templates/team_league/python/team-league-elt-dataflow-python.json"
export SDK_LANGUAGE=PYTHON

# Composer (deployment DAG)
export DAG_FOLDER=team_league_etl_dataflow_dag
export COMPOSER_ENVIRONMENT=dev-composer-env
export CONFIG_FOLDER_NAME=config
export ENV=dev

Deploy the Dataflow Flex template with Cloud Build from local machine

gcloud builds submit \
    --project=$PROJECT_ID \
    --region=$LOCATION \
    --config deploy-dataflow-flex-template.yaml \
    --substitutions _REPO_NAME="$REPO_NAME",_IMAGE_NAME="$IMAGE_NAME",_IMAGE_TAG="$IMAGE_TAG",_METADATA_TEMPLATE_FILE_PATH="$METADATA_TEMPLATE_FILE_PATH",_SDK_LANGUAGE="$SDK_LANGUAGE",_METADATA_FILE="$METADATA_FILE" \
    --verbosity="debug" .

Deploy the Dataflow Flex template with Cloud Build manual trigger on Github repository : build Docker image and create template spec file

gcloud beta builds triggers create manual \
    --project=$PROJECT_ID \
    --region=$LOCATION \
    --name="deploy-dataflow-template-team-league-python-dockerfile" \
    --repo="https://github.com/tosun-si/dataflow-python-ci-cd" \
    --repo-type="GITHUB" \
    --branch="main" \
    --build-config="deploy-dataflow-flex-template.yaml" \
    --substitutions _REPO_NAME="$REPO_NAME",_IMAGE_NAME="$IMAGE_NAME",_IMAGE_TAG="$IMAGE_TAG",_METADATA_TEMPLATE_FILE_PATH="$METADATA_TEMPLATE_FILE_PATH",_SDK_LANGUAGE="$SDK_LANGUAGE",_METADATA_FILE="$METADATA_FILE" \
    --verbosity="debug"

Deploy the Airflow DAG in Composer with Cloud Build from the local machine

gcloud builds submit \
    --project=$PROJECT_ID \
    --region=$LOCATION \
    --config deploy-airflow-dag.yaml \
    --substitutions _DAG_FOLDER="$DAG_FOLDER",_COMPOSER_ENVIRONMENT="$COMPOSER_ENVIRONMENT",_CONFIG_FOLDER_NAME="$CONFIG_FOLDER_NAME",_ENV="$ENV" \
    --verbosity="debug" .

Deploy the Airflow DAG in Composer with a Cloud Build manual trigger :

gcloud beta builds triggers create manual \
    --project=$PROJECT_ID \
    --region=$LOCATION \
    --name="deploy-airflow-dag-dataflow-elt-team-stats" \
    --repo="https://github.com/tosun-si/teams-league-airflow-dataflow-etl" \
    --repo-type="GITHUB" \
    --branch="main" \
    --build-config="deploy-airflow-dag.yaml" \
    --substitutions _DAG_FOLDER="$DAG_FOLDER",_COMPOSER_ENVIRONMENT="$COMPOSER_ENVIRONMENT",_CONFIG_FOLDER_NAME="$CONFIG_FOLDER_NAME",_ENV="$ENV" \
    --verbosity="debug"

About

This project shows a real world use case with ETL batch pipeline using Cloud Storage, Dataflow and BigQuery orchestrated by Cloud Composer / Airflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published