Skip to content
Interactive data analysis with Pandas and Treasure Data.
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
contrib/jupyter
doc delete the sampling example Nov 14, 2016
pandas_td Bump version; 0.9.1.dev0 [ci skip] Aug 31, 2018
.gitignore
.travis.yml
CHANGELOG.md
LICENSE
MANIFEST.in
README.md
requirements.txt
setup.py

README.md

Pandas-TD

Build Status Code Health Coverage Status PyPI version

Pandas-TD

Documentation

Install

You can install the releases from PyPI:

$ pip install pandas-td

On Mac OS X, you can install Pandas and Jupyter as follows:

# Use Homebrew to install Python 3.x
$ brew install python3

# Install pandas, pandas-td, and jupyter
$ pip3 install pandas pandas-td jupyter

# Set API key and start a session
$ export TD_API_KEY=...
$ jupyter notebook

Examples

import pandas_td as td

# Initialize query engine
engine = td.create_engine('presto:sample_datasets')

# Read Treasure Data query into a DataFrame.
df = td.read_td('select * from www_access', engine)

# Read Treasure Data table into a DataFrame.
df = td.read_td_table('nasdaq', engine, limit=10000)

# Write a DataFrame to a Treasure Data table.
con = td.connect()
td.to_td(df, 'my_db.test_table', con, if_exists='replace', index=False)

Magic functions (experimental):

In [1]: %%load_ext pandas_td.ipython

# Use database
In [2]: %td_use sample_datasets

# Run query
In [3]: %%td_presto
   ...: select * from www_access

License

Apache Software License, Version 2.0

You can’t perform that action at this time.