Skip to content
This repository has been archived by the owner on May 28, 2019. It is now read-only.

Commit

Permalink
xmr: better memory tracing for bulletproofs
Browse files Browse the repository at this point in the history
  • Loading branch information
ph4r05 committed Aug 17, 2018
1 parent 8759548 commit 8ea1ec4
Showing 1 changed file with 30 additions and 21 deletions.
51 changes: 30 additions & 21 deletions src/apps/monero/xmr/bulletproof.py
Original file line number Diff line number Diff line change
Expand Up @@ -520,6 +520,14 @@ def __init__(self):
self.v_sL = None
self.v_sR = None
self.tmp_sc_1 = crypto.new_scalar()
self.gc_fnc = gc.collect
self.gc_trace = None

def gc(self, *args):
if self.gc_trace:
self.gc_trace(*args)
if self.gc_fnc:
self.gc_fnc()

def set_input(self, value=None, mask=None):
self.value = value
Expand Down Expand Up @@ -605,15 +613,15 @@ def prove_s1(self, V, A, S, T1, T2, taux, mu, t, x_ip, y, hash_cache, l, r):
hash_cache_mash(y, hash_cache, A, S)
hash_to_scalar(hash_cache, y)
copy_key(z, hash_cache)
gc.collect()
self.gc(1)

# Polynomial construction before PAPER LINE 46
t0 = _ensure_dst_key()
t1 = _ensure_dst_key()
t2 = _ensure_dst_key()

yN = vector_powers(y, BP_N)
gc.collect()
self.gc(2)

ip1y = inner_product(self.oneN, yN)
sc_muladd(t0, z, ip1y, t0)
Expand All @@ -630,20 +638,20 @@ def prove_s1(self, V, A, S, T1, T2, taux, mu, t, x_ip, y, hash_cache, l, r):
sc_mul(zcu, zsq, z)
sc_mulsub(k, zcu, self.ip12, k)
sc_add(t0, t0, k)
gc.collect()
self.gc(3)

# step 2
vpIz = vector_scalar(self.oneN, z)
aL_vpIz = vector_subtract(self.v_aL, vpIz)
aR_vpIz = vector_add(self.v_aR, vpIz)
del vpIz
gc.collect()
self.gc(4)

HyNsR = hadamard(yN, self.v_sR)
ip1 = inner_product(aL_vpIz, HyNsR)
ip3 = inner_product(self.v_sL, HyNsR)
del HyNsR
gc.collect()
self.gc(5)

sc_add(t1, t1, ip1)

Expand All @@ -656,7 +664,7 @@ def prove_s1(self, V, A, S, T1, T2, taux, mu, t, x_ip, y, hash_cache, l, r):
vector_add(tmp_vct, vp2zsq, tmp_vct)
ip2 = inner_product(self.v_sL, tmp_vct)

gc.collect()
self.gc(6)
sc_add(t1, t1, ip2)
sc_add(t2, t2, ip3)

Expand All @@ -679,30 +687,30 @@ def prove_s1(self, V, A, S, T1, T2, taux, mu, t, x_ip, y, hash_cache, l, r):
sc_muladd(taux, tau2, xsq, taux)
sc_muladd(taux, self.gamma_enc, zsq, taux)
sc_muladd(mu, x, rho, alpha)
gc.collect()
self.gc(7)

# PAPER LINES 54-57
vector_add(aL_vpIz, vector_scalar(self.v_sL, x), l)
self.v_sL = None
del aL_vpIz
gc.collect()
self.gc(8)

# Originally:
# vector_add(hadamard(yN, vector_add(aR_vpIz, vector_scalar(self.v_sR, x))), vp2zsq, r)
vector_scalar(self.v_sR, x, tmp_vct)
vector_add(aR_vpIz, tmp_vct, tmp_vct)
del aR_vpIz
gc.collect()
self.gc(9)

hadamard(yN, tmp_vct, tmp_vct)
del yN
gc.collect()
self.gc(10)

vector_add(tmp_vct, vp2zsq, r)
self.v_sR = None
del vp2zsq
del tmp_vct
gc.collect()
self.gc(11)

inner_product(l, r, t)
hash_cache_mash(x_ip, hash_cache, x, taux, mu, t)
Expand All @@ -721,7 +729,7 @@ def prove_s2(self, x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0):
Gprime[i] = self.Gprec[i]
scalarmult_key(Hprime[i], self.Hprec[i], yinvpow)
sc_mul(yinvpow, yinvpow, yinv)
gc.collect()
self.gc(20)

round = 0
nprime = BP_N
Expand All @@ -744,7 +752,7 @@ def prove_s2(self, x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0):
_tmp_vct_2.resize(nprime, chop=True)
_tmp_vct_3.resize(nprime, chop=True)
_tmp_vct_4.resize(nprime, chop=True)
gc.collect()
self.gc(21)

# PAPER LINES 16-17
cL = inner_product(
Expand Down Expand Up @@ -776,7 +784,7 @@ def prove_s2(self, x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0):
bprime.slice(_tmp_vct_4, 0, nprime),
R[round],
)
gc.collect()
self.gc(22)

sc_mul(tmp, cR, x_ip)
add_keys(R[round], R[round], scalarmult_key(_tmp_k_1, XMR_H, tmp))
Expand All @@ -803,7 +811,7 @@ def prove_s2(self, x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0):
),
Hprime,
)
gc.collect()
self.gc(23)

# PAPER LINES 28-29
vector_add(
Expand All @@ -825,7 +833,7 @@ def prove_s2(self, x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0):
)

round += 1
gc.collect()
self.gc(24)

copy_key(aprime0, aprime[0])
copy_key(bprime0, bprime[0])
Expand Down Expand Up @@ -858,13 +866,13 @@ def prove(self):
r = _ensure_dst_keyvect(None, BP_N)

self.init_vct()
gc.collect()
self.gc(50)

self.prove_s1(V, A, S, T1, T2, taux, mu, t, x_ip, y, hash_cache, l, r)
gc.collect()
self.gc(51)

self.prove_s2(x_ip, y, hash_cache, l, r, L, R, aprime0, bprime0)
gc.collect()
self.gc(52)

return Bulletproof(
V=[V],
Expand Down Expand Up @@ -944,7 +952,7 @@ def verify(self, proof):
sc_mul(xsq, x, x)
scalarmult_key(tmp, proof.T2, xsq)
add_keys(L61Right, L61Right, tmp)
gc.collect()
self.gc(60)

if L61Right != L61Left:
raise ValueError("Verification failure 1")
Expand Down Expand Up @@ -1010,6 +1018,7 @@ def verify(self, proof):

del g_scalar
del h_scalar
self.gc(61)

# PAPER LINE 26
pprime = _ensure_dst_key()
Expand All @@ -1030,7 +1039,7 @@ def verify(self, proof):
sc_mul(tmp, tmp, x_ip)
scalarmult_key(tmp, XMR_H, tmp)
add_keys(tmp, tmp, inner_prod)
gc.collect()
self.gc(62)

if pprime != tmp:
raise ValueError("Verification failure step 2")
Expand Down

0 comments on commit 8ea1ec4

Please sign in to comment.