This zip includes:
- Source code of our 2 streaming algorithms, greedy and SGr.
- Facebook dataset (in "data" folder) for testing the algorithms. Due to file size restriction in Github, please find the Sensor dataset in Intel Lab Data (http://db.csail.mit.edu/labdata/labdata.html).
Since estimating F in influence maximization is very time consuming, our code uses OpenMP for parallelization (https://en.wikipedia.org/wiki/OpenMP).
Before running experiments, you should generate cost_matrix in Constants.cpp To generate:
node data/generateCost.js -n <no_of_nodes> -k <value_of_k> [--equal]
To build our code, run:
g++ -std=c++11 *.cpp -o ksub -DIL_STD -fopenmp -g
After building, to run our code, run:
./ksub -f <data filename>
-V <size of V>
-t <type of experiment, 0: influence maximization, 1: sensor placement>
-k <value of k>
-B <value of B>
-b <value of beta>
-r <value of rho>
-e <value of epsilon>
-n <value of eta - denoise step for RStream>
-g <value of gamma>
-a <algorithm, 0: Greedy, 1: DStream, 2: RStream, 3: SGr, 4: SampleRstream. Please use SSA source code for testing IM algorithm>
-p <number of threads (OpenMP) to running algorithms>