Macros that generate dbt code, and log it to the command line.
New to dbt packages? Read more about them here.
- Include this package in your
packages.yml
file — check here for the latest version number. - Run
dbt deps
to install the package.
generate_source (source)
This macro generates lightweight YAML for a Source, which you can then paste into a schema file.
schema_name
(required): The schema name that contains your source datadatabase_name
(optional, default=target.database): The database that your source data is in.table_names
(optional, default=none): A list of tables that you want to generate the source definitions for.generate_columns
(optional, default=False): Whether you want to add the column names to your source definition.include_descriptions
(optional, default=False): Whether you want to add description placeholders to your source definition.table_pattern
(optional, default='%'): A table prefix / postfix that you want to subselect from all available tables within a given schema.exclude
(optional, default=''): A string you want to exclude from the selection criterianame
(optional, default=schema_name): The name of your source
- Copy the macro into a statement tab in the dbt Cloud IDE, or into an analysis file, and compile your code
{{ codegen.generate_source('raw_jaffle_shop') }}
Alternatively, call the macro as an operation:
$ dbt run-operation generate_source --args 'schema_name: raw_jaffle_shop'
or
# for multiple arguments, use the dict syntax
$ dbt run-operation generate_source --args '{"schema_name": "jaffle_shop", "database_name": "raw", "table_names":["table_1", "table_2"]}'
- The YAML for the source will be logged to the command line
version: 2
sources:
- name: raw_jaffle_shop
database: raw
tables:
- name: customers
description: ""
- name: orders
description: ""
- name: payments
description: ""
- Paste the output in to a schema
.yml
file, and refactor as required.
generate_base_model (source)
This macro generates the SQL for a base model, which you can then paste into a model.
source_name
(required): The source you wish to generate base model SQL for.table_name
(required): The source table you wish to generate base model SQL for.leading_commas
(optional, default=False): Whether you want your commas to be leading (vs trailing).case_sensitive_cols
(optional, default=False): Whether your source table has case sensitive column names. If true, keeps the case of the column names from the source.
- Create a source for the table you wish to create a base model on top of.
- Copy the macro into a statement tab in the dbt Cloud IDE, or into an analysis file, and compile your code
{{ codegen.generate_base_model(
source_name='raw_jaffle_shop',
table_name='customers'
) }}
Alternatively, call the macro as an operation:
$ dbt run-operation generate_base_model --args '{"source_name": "raw_jaffle_shop", "table_name": "customers"}'
- The SQL for a base model will be logged to the command line
with source as (
select * from {{ source('raw_jaffle_shop', 'customers') }}
),
renamed as (
select
id,
first_name,
last_name,
email,
_elt_updated_at
from source
)
select * from renamed
- Paste the output in to a model, and refactor as required.
generate_model_yaml (source)
This macro generates the YAML for a model, which you can then paste into a schema.yml file.
model_name
(required): The model you wish to generate YAML for.upstream_descriptions
(optional, default=False): Whether you want to include descriptions for identical column names from upstream models.
- Create a model.
- Copy the macro into a statement tab in the dbt Cloud IDE, or into an analysis file, and compile your code
{{ codegen.generate_model_yaml(
model_name='customers'
) }}
Alternatively, call the macro as an operation:
$ dbt run-operation generate_model_yaml --args '{"model_name": "customers"}'
- The YAML for a base model will be logged to the command line
version: 2
models:
- name: customers
columns:
- name: customer_id
description: ""
- name: customer_name
description: ""
- Paste the output in to a schema.yml file, and refactor as required.