Implement the exercises of UFLDL Tutorial with python 3
Tutorial Website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
- load_MNIST.py: Load MNIST dataset
- sample_images.py: Load sample images for testing sparse autoencoder
- sparse_autoencoder.py: Functions used in sparse autoencoder
- train.py: Train sparse autoencoder on sample images
- train_mnist.py: Train sparse autoencoder with MNIST data
- check_numerical_gradient.py: Check numerical gradients
- display_network.py: Display visualized features
- pca_2d.py: PCA, PCA whitening and ZCA whitening in 2D
- pca_gen.py: PCA and Whitening on natural images
- softmax.py: Functions used in softmax regression
- softmax_exercise.py: Classify MNIST digits
- stl_exercise.py: Classify MNIST digits with self-taught learning and softmax regression
- stacked_autoencoder.py: Functions used in stacked autoencoder
- stacked_autoencoder_exercise.py: Use a stacked autoencoder for digit classification
- linear_decoder_exercise.py: Implement a linear decoder and apply it to learn features on color images
- cnn.py: Functions used in convolution neural networks
- cnn_exercise.py: Classify STL-10 images