Skip to content

tsaith/ufldl_tutorial

Repository files navigation

Unsupervised Feature Learning and Deep Learning Tutorial

Implement the exercises of UFLDL Tutorial with python 3

Tutorial Website: http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

Packages required

Sparse Autoencoder

  • load_MNIST.py: Load MNIST dataset
  • sample_images.py: Load sample images for testing sparse autoencoder
  • sparse_autoencoder.py: Functions used in sparse autoencoder
  • train.py: Train sparse autoencoder on sample images
  • train_mnist.py: Train sparse autoencoder with MNIST data
  • check_numerical_gradient.py: Check numerical gradients
  • display_network.py: Display visualized features

Preprocessing: PCA & Whitening

  • pca_2d.py: PCA, PCA whitening and ZCA whitening in 2D
  • pca_gen.py: PCA and Whitening on natural images

Softmax Regression

  • softmax.py: Functions used in softmax regression
  • softmax_exercise.py: Classify MNIST digits

Self-Taught Learning and Unsupervised Feature Learning

  • stl_exercise.py: Classify MNIST digits with self-taught learning and softmax regression

Building Deep Networks for Classification

  • stacked_autoencoder.py: Functions used in stacked autoencoder
  • stacked_autoencoder_exercise.py: Use a stacked autoencoder for digit classification

Linear Decoders with Autoencoders

  • linear_decoder_exercise.py: Implement a linear decoder and apply it to learn features on color images

Working with Large Images (Convolutional Neural Networks)

  • cnn.py: Functions used in convolution neural networks
  • cnn_exercise.py: Classify STL-10 images

About

Implement the exercises of UFLDL Tutorial with python 3

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages