Skip to content

The code used in the experiments in the AAAI 2018 and IJCAI 2018 papers on linear extension counting

Notifications You must be signed in to change notification settings

ttalvitie/le-counting-practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Counting Linear Extensions in Practice

The code used for the experiments in the IJCAI 2018 paper A Scalable Scheme for Counting Linear Extensions and AAAI 2018 paper Counting Linear Extensions in Practice: MCMC versus Exponential Monte Carlo.

COMPILING

The Makefile in the root can be used to compile all solutions and generate all instances:

$ make

The running make in the subdirectories can be used to compile parts selectively.

DEPENDENCIES

Instance generation requires Python 3. The solutions require a version of the g++ compiler that supports C++11. In addition, the LEcount solutions (Exact Dynamic Programming and Adaptive Relaxation Monte Carlo) require Boost and GMP.

USAGE

The instances are generated to instances/*.txt as adjacency matrices. The draw.py script can be used to visualize them to instances/img/ (requires GraphViz).

Each solution program in solutions/ takes the name of the adjacency matrix file as the first command line argument, possibly followed by solution-specific options, and outputs the estimate for the number of linear extensions. Some solutions also write extra information to the standard error stream. All solutions support partial orders with at most 512 elements.

IJCAI 2018: A Scalable Scheme for Counting Linear Extensions

Relaxation Tootsie Pop:

$ solutions/relaxation-tpa/count INSTANCE

Trivial Relaxation Tootsie Pop:

$ solutions/relaxation-tpa/trivial INSTANCE

Telescopic Product:

$ solutions/telescopic-product/decomposition INSTANCE GibbsLinextSampler

Extension Tootsie Pop:

$ solutions/extension-tpa/count INSTANCE

Adaptive Relaxation Monte Carlo:

$ solutions/lecount/lecount INSTANCE --algorithm=armc

SAT Encodings #1 and #2:

These output a DIMACS CNF encoding for the instance, which can then be used as input for a SAT model counter (D4, sharpSAT and ApproxMC2 in the paper) to count the linear extensions.

$ solutions/sat/encoding.py INSTANCE 1
$ solutions/sat/encoding.py INSTANCE 2

AAAI 2018: Counting Linear Extensions in Practice: MCMC versus Exponential Monte Carlo

Telescopic Product:

$ solutions/telescopic-product/basic INSTANCE SwapLinextSampler

Decomposition Telescopic Product:

$ solutions/telescopic-product/decomposition INSTANCE SwapLinextSampler

Decomposition Telescopic Product using the Gibbs sampler:

$ solutions/telescopic-product/decomposition INSTANCE GibbsLinextSampler

Tootsie Pop:

$ solutions/tpa/count INSTANCE

Exact Dynamic Programming:

$ solutions/lecount/lecount INSTANCE --algorithm=dp

Adaptive Relaxation Monte Carlo:

$ solutions/lecount/lecount INSTANCE --algorithm=armc

Variable Elimination via Inclusion-Exclusion (exact):

$ solutions/lecount/lecount INSTANCE --algorithm=veie

About

The code used in the experiments in the AAAI 2018 and IJCAI 2018 papers on linear extension counting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published