-
Notifications
You must be signed in to change notification settings - Fork 58
/
contracts.go
executable file
·360 lines (320 loc) · 11.4 KB
/
contracts.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright 2014 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package vm
import (
"crypto/sha256"
"errors"
"math/big"
"github.com/TTCECO/gttc/common"
"github.com/TTCECO/gttc/common/math"
"github.com/TTCECO/gttc/crypto"
"github.com/TTCECO/gttc/crypto/bn256"
"github.com/TTCECO/gttc/params"
"golang.org/x/crypto/ripemd160"
)
// PrecompiledContract is the basic interface for native Go contracts. The implementation
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use
Run(input []byte) ([]byte, error) // Run runs the precompiled contract
}
// PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
// contracts used in the Frontier and Homestead releases.
var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
}
// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
common.BytesToAddress([]byte{1}): &ecrecover{},
common.BytesToAddress([]byte{2}): &sha256hash{},
common.BytesToAddress([]byte{3}): &ripemd160hash{},
common.BytesToAddress([]byte{4}): &dataCopy{},
common.BytesToAddress([]byte{5}): &bigModExp{},
common.BytesToAddress([]byte{6}): &bn256Add{},
common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
common.BytesToAddress([]byte{8}): &bn256Pairing{},
}
// RunPrecompiledContract runs and evaluates the output of a precompiled contract.
func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
gas := p.RequiredGas(input)
if contract.UseGas(gas) {
return p.Run(input)
}
return nil, ErrOutOfGas
}
// ECRECOVER implemented as a native contract.
type ecrecover struct{}
func (c *ecrecover) RequiredGas(input []byte) uint64 {
return params.EcrecoverGas
}
func (c *ecrecover) Run(input []byte) ([]byte, error) {
const ecRecoverInputLength = 128
input = common.RightPadBytes(input, ecRecoverInputLength)
// "input" is (hash, v, r, s), each 32 bytes
// but for ecrecover we want (r, s, v)
r := new(big.Int).SetBytes(input[64:96])
s := new(big.Int).SetBytes(input[96:128])
v := input[63] - 27
// tighter sig s values input homestead only apply to tx sigs
if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
return nil, nil
}
// v needs to be at the end for libsecp256k1
pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
// make sure the public key is a valid one
if err != nil {
return nil, nil
}
// the first byte of pubkey is bitcoin heritage
return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
}
// SHA256 implemented as a native contract.
type sha256hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
}
func (c *sha256hash) Run(input []byte) ([]byte, error) {
h := sha256.Sum256(input)
return h[:], nil
}
// RIPMED160 implemented as a native contract.
type ripemd160hash struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
}
func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
ripemd := ripemd160.New()
ripemd.Write(input)
return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
}
// data copy implemented as a native contract.
type dataCopy struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(input []byte) uint64 {
return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
}
func (c *dataCopy) Run(in []byte) ([]byte, error) {
return in, nil
}
// bigModExp implements a native big integer exponential modular operation.
type bigModExp struct{}
var (
big1 = big.NewInt(1)
big4 = big.NewInt(4)
big8 = big.NewInt(8)
big16 = big.NewInt(16)
big32 = big.NewInt(32)
big64 = big.NewInt(64)
big96 = big.NewInt(96)
big480 = big.NewInt(480)
big1024 = big.NewInt(1024)
big3072 = big.NewInt(3072)
big199680 = big.NewInt(199680)
)
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bigModExp) RequiredGas(input []byte) uint64 {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
expLen = new(big.Int).SetBytes(getData(input, 32, 32))
modLen = new(big.Int).SetBytes(getData(input, 64, 32))
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Retrieve the head 32 bytes of exp for the adjusted exponent length
var expHead *big.Int
if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
expHead = new(big.Int)
} else {
if expLen.Cmp(big32) > 0 {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
} else {
expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
}
}
// Calculate the adjusted exponent length
var msb int
if bitlen := expHead.BitLen(); bitlen > 0 {
msb = bitlen - 1
}
adjExpLen := new(big.Int)
if expLen.Cmp(big32) > 0 {
adjExpLen.Sub(expLen, big32)
adjExpLen.Mul(big8, adjExpLen)
}
adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
// Calculate the gas cost of the operation
gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
switch {
case gas.Cmp(big64) <= 0:
gas.Mul(gas, gas)
case gas.Cmp(big1024) <= 0:
gas = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
)
default:
gas = new(big.Int).Add(
new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
)
}
gas.Mul(gas, math.BigMax(adjExpLen, big1))
gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
if gas.BitLen() > 64 {
return math.MaxUint64
}
return gas.Uint64()
}
func (c *bigModExp) Run(input []byte) ([]byte, error) {
var (
baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
)
if len(input) > 96 {
input = input[96:]
} else {
input = input[:0]
}
// Handle a special case when both the base and mod length is zero
if baseLen == 0 && modLen == 0 {
return []byte{}, nil
}
// Retrieve the operands and execute the exponentiation
var (
base = new(big.Int).SetBytes(getData(input, 0, baseLen))
exp = new(big.Int).SetBytes(getData(input, baseLen, expLen))
mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
)
if mod.BitLen() == 0 {
// Modulo 0 is undefined, return zero
return common.LeftPadBytes([]byte{}, int(modLen)), nil
}
return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
}
// newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newCurvePoint(blob []byte) (*bn256.G1, error) {
p := new(bn256.G1)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
// returning it, or an error if the point is invalid.
func newTwistPoint(blob []byte) (*bn256.G2, error) {
p := new(bn256.G2)
if _, err := p.Unmarshal(blob); err != nil {
return nil, err
}
return p, nil
}
// bn256Add implements a native elliptic curve point addition.
type bn256Add struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256Add) RequiredGas(input []byte) uint64 {
return params.Bn256AddGas
}
func (c *bn256Add) Run(input []byte) ([]byte, error) {
x, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
y, err := newCurvePoint(getData(input, 64, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.Add(x, y)
return res.Marshal(), nil
}
// bn256ScalarMul implements a native elliptic curve scalar multiplication.
type bn256ScalarMul struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
return params.Bn256ScalarMulGas
}
func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
p, err := newCurvePoint(getData(input, 0, 64))
if err != nil {
return nil, err
}
res := new(bn256.G1)
res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
return res.Marshal(), nil
}
var (
// true32Byte is returned if the bn256 pairing check succeeds.
true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
// false32Byte is returned if the bn256 pairing check fails.
false32Byte = make([]byte, 32)
// errBadPairingInput is returned if the bn256 pairing input is invalid.
errBadPairingInput = errors.New("bad elliptic curve pairing size")
)
// bn256Pairing implements a pairing pre-compile for the bn256 curve
type bn256Pairing struct{}
// RequiredGas returns the gas required to execute the pre-compiled contract.
func (c *bn256Pairing) RequiredGas(input []byte) uint64 {
return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas
}
func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
// Handle some corner cases cheaply
if len(input)%192 > 0 {
return nil, errBadPairingInput
}
// Convert the input into a set of coordinates
var (
cs []*bn256.G1
ts []*bn256.G2
)
for i := 0; i < len(input); i += 192 {
c, err := newCurvePoint(input[i : i+64])
if err != nil {
return nil, err
}
t, err := newTwistPoint(input[i+64 : i+192])
if err != nil {
return nil, err
}
cs = append(cs, c)
ts = append(ts, t)
}
// Execute the pairing checks and return the results
if bn256.PairingCheck(cs, ts) {
return true32Byte, nil
}
return false32Byte, nil
}