Use Nimble to express the expected outcomes of Swift or Objective-C expressions. Inspired by Cedar.
// Swift
expect(1 + 1).to(equal(2))
expect(1.2).to(beCloseTo(1.1, within: 0.1))
expect(3) > 2
expect("seahorse").to(contain("sea"))
expect(["Atlantic", "Pacific"]).toNot(contain("Mississippi"))
expect(ocean.isClean).toEventually(beTruthy())
Table of Contents generated with DocToc
- Some Background: Expressing Outcomes Using Assertions in XCTest
- Nimble: Expectations Using
expect(...).to
- Built-in Matcher Functions
- Writing Your Own Matchers
- Installing Nimble
Apple's Xcode includes the XCTest framework, which provides
assertion macros to test whether code behaves properly.
For example, to assert that 1 + 1 = 2
, XCTest has you write:
// Swift
XCTAssertEqual(1 + 1, 2, "expected one plus one to equal two")
Or, in Objective-C:
// Objective-C
XCTAssertEqual(1 + 1, 2, @"expected one plus one to equal two");
XCTest assertions have a couple of drawbacks:
- Not enough macros. There's no easy way to assert that a string contains a particular substring, or that a number is less than or equal to another.
- It's hard to write asynchronous tests. XCTest forces you to write a lot of boilerplate code.
Nimble addresses these concerns.
Nimble allows you to express expectations using a natural, easily understood language:
// Swift
import Nimble
expect(seagull.squawk).to(equal("Squee!"))
// Objective-C
@import Nimble;
expect(seagull.squawk).to(equal(@"Squee!"));
The
expect
function autocompletes to includefile:
andline:
, but these parameters are optional. Use the default values to have Xcode highlight the correct line when an expectation is not met.
To perform the opposite expectation--to assert something is not
equal--use toNot
or notTo
:
// Swift
import Nimble
expect(seagull.squawk).toNot(equal("Oh, hello there!"))
expect(seagull.squawk).notTo(equal("Oh, hello there!"))
// Objective-C
@import Nimble;
expect(seagull.squawk).toNot(equal(@"Oh, hello there!"));
expect(seagull.squawk).notTo(equal(@"Oh, hello there!"));
Would you like to add more information to the test's failure messages? Use the description
optional argument to add your own text:
// Swift
expect(1 + 1).to(equal(3))
// failed - expected to equal <3>, got <2>
expect(1 + 1).to(equal(3), description: "Make sure libKindergartenMath is loaded")
// failed - Make sure libKindergartenMath is loaded
// expected to equal <3>, got <2>
Or the *WithDescription version in Objective-C:
// Objective-C
@import Nimble;
expect(@(1+1)).to(equal(@3));
// failed - expected to equal <3.0000>, got <2.0000>
expect(@(1+1)).toWithDescription(equal(@3), @"Make sure libKindergartenMath is loaded");
// failed - Make sure libKindergartenMath is loaded
// expected to equal <3.0000>, got <2.0000>
Nimble makes sure you don't compare two types that don't match:
// Swift
// Does not compile:
expect(1 + 1).to(equal("Squee!"))
Nimble uses generics--only available in Swift--to ensure type correctness. That means type checking is not available when using Nimble in Objective-C. 😭
Tired of so much typing? With Nimble, you can use overloaded operators
like ==
for equivalence, or >
for comparisons:
// Swift
// Passes if squawk does not equal "Hi!":
expect(seagull.squawk) != "Hi!"
// Passes if 10 is greater than 2:
expect(10) > 2
Operator overloads are only available in Swift, so you won't be able to use this syntax in Objective-C. 💔
The expect
function doesn't evaluate the value it's given until it's
time to match. So Nimble can test whether an expression raises an
exception once evaluated:
// Swift
// Note: Swift currently doesn't have exceptions.
// Only Objective-C code can raise exceptions
// that Nimble will catch.
// (see https://github.com/Quick/Nimble/issues/220#issuecomment-172667064)
let exception = NSException(
name: NSInternalInconsistencyException,
reason: "Not enough fish in the sea.",
userInfo: ["something": "is fishy"])
expect { exception.raise() }.to(raiseException())
// Also, you can customize raiseException to be more specific
expect { exception.raise() }.to(raiseException(named: NSInternalInconsistencyException))
expect { exception.raise() }.to(raiseException(
named: NSInternalInconsistencyException,
reason: "Not enough fish in the sea"))
expect { exception.raise() }.to(raiseException(
named: NSInternalInconsistencyException,
reason: "Not enough fish in the sea",
userInfo: ["something": "is fishy"]))
Objective-C works the same way, but you must use the expectAction
macro when making an expectation on an expression that has no return
value:
// Objective-C
NSException *exception = [NSException exceptionWithName:NSInternalInconsistencyException
reason:@"Not enough fish in the sea."
userInfo:nil];
expectAction(^{ [exception raise]; }).to(raiseException());
// Use the property-block syntax to be more specific.
expectAction(^{ [exception raise]; }).to(raiseException().named(NSInternalInconsistencyException));
expectAction(^{ [exception raise]; }).to(raiseException().
named(NSInternalInconsistencyException).
reason("Not enough fish in the sea"));
expectAction(^{ [exception raise]; }).to(raiseException().
named(NSInternalInconsistencyException).
reason("Not enough fish in the sea").
userInfo(@{@"something": @"is fishy"}));
// You can also pass a block for custom matching of the raised exception
expectAction(exception.raise()).to(raiseException().satisfyingBlock(^(NSException *exception) {
expect(exception.name).to(beginWith(NSInternalInconsistencyException));
}));
Some testing frameworks make it hard to test primitive C values. In Nimble, it just works:
// Swift
let actual: CInt = 1
let expectedValue: CInt = 1
expect(actual).to(equal(expectedValue))
In fact, Nimble uses type inference, so you can write the above without explicitly specifying both types:
// Swift
expect(1 as CInt).to(equal(1))
In Objective-C, Nimble only supports Objective-C objects. To make expectations on primitive C values, wrap then in an object literal:
expect(@(1 + 1)).to(equal(@2));
Nimble makes it easy to await for an async function to complete. Simply pass
the async function in to expect
:
// Swift
await expect { await aFunctionReturning1() }.to(equal(1))
The async function is awaited on first, before passing it to the matcher. This enables the matcher to run synchronous code like before, without caring about whether the value it's processing was abtained async or not.
Async support is Swift-only, and it requires that you execute the test in an
async context. For XCTest, this is as simple as marking your test function with
async
. If you use Quick, then you don't need to do anything because as of
Quick 6, all tests are executed in an async context.
To avoid a compiler errors when using synchronous expect
in asynchronous contexts,
expect
with async expressions does not support autoclosures. However, the expecta
(expect async) function is provided as an alternative, which does support autoclosures.
// Swift
await expect(await aFunctionReturning1()).to(equal(1)))
Similarly, if you're ever in a situation where you want to force the compiler to
produce a SyncExpectation
, you can use the expects
(expect sync) function to
produce a SyncExpectation
. Like so:
// Swift
expects(someNonAsyncFunction()).to(equal(1)))
expects(await someAsyncFunction()).to(equal(1)) // Compiler error: 'async' call in an autoclosure that does not support concurrency
Note: Async/Await support is different than the toEventually
/toEventuallyNot
feature described below.
In Nimble, it's easy to make expectations on values that are updated
asynchronously. Just use toEventually
or toEventuallyNot
:
// Swift
DispatchQueue.main.async {
ocean.add("dolphins")
ocean.add("whales")
}
expect(ocean).toEventually(contain("dolphins", "whales"))
// Objective-C
dispatch_async(dispatch_get_main_queue(), ^{
[ocean add:@"dolphins"];
[ocean add:@"whales"];
});
expect(ocean).toEventually(contain(@"dolphins", @"whales"));
Note: toEventually triggers its polls on the main thread. Blocking the main thread will cause Nimble to stop the run loop. This can cause test pollution for whatever incomplete code that was running on the main thread. Blocking the main thread can be caused by blocking IO, calls to sleep(), deadlocks, and synchronous IPC.
In the above example, ocean
is constantly re-evaluated. If it ever
contains dolphins and whales, the expectation passes. If ocean
still
doesn't contain them, even after being continuously re-evaluated for one
whole second, the expectation fails.
toEventaully
et. al. now also supports async expectations. For example, the following test is now supported:
actor MyActor {
private var counter = 0
func access() -> Int {
counter += 1
return counter
}
}
let subject = MyActor()
await expect { await subject.access() }.toEventually(equal(2))
You can also test that a value always or never matches throughout the length of the timeout. Use toNever
and toAlways
for this:
// Swift
ocean.add("dolphins")
expect(ocean).toAlways(contain("dolphins"))
expect(ocean).toNever(contain("hares"))
// Objective-C
[ocean add:@"dolphins"]
expect(ocean).toAlways(contain(@"dolphins"))
expect(ocean).toNever(contain(@"hares"))
Sometimes it takes more than a second for a value to update. In those
cases, use the timeout
parameter:
// Swift
// Waits three seconds for ocean to contain "starfish":
expect(ocean).toEventually(contain("starfish"), timeout: .seconds(3))
// Evaluate someValue every 0.2 seconds repeatedly until it equals 100, or fails if it timeouts after 5.5 seconds.
expect(someValue).toEventually(equal(100), timeout: .milliseconds(5500), pollInterval: .milliseconds(200))
// Objective-C
// Waits three seconds for ocean to contain "starfish":
expect(ocean).withTimeout(3).toEventually(contain(@"starfish"));
You can also provide a callback by using the waitUntil
function:
// Swift
waitUntil { done in
ocean.goFish { success in
expect(success).to(beTrue())
done()
}
}
// Objective-C
waitUntil(^(void (^done)(void)){
[ocean goFishWithHandler:^(BOOL success){
expect(success).to(beTrue());
done();
}];
});
waitUntil
also optionally takes a timeout parameter:
// Swift
waitUntil(timeout: .seconds(10)) { done in
ocean.goFish { success in
expect(success).to(beTrue())
done()
}
}
// Objective-C
waitUntilTimeout(10, ^(void (^done)(void)){
[ocean goFishWithHandler:^(BOOL success){
expect(success).to(beTrue());
done();
}];
});
Note: waitUntil
triggers its timeout code on the main thread. Blocking the main
thread will cause Nimble to stop the run loop to continue. This can cause test
pollution for whatever incomplete code that was running on the main thread.
Blocking the main thread can be caused by blocking IO, calls to sleep(),
deadlocks, and synchronous IPC.
In some cases (e.g. when running on slower machines) it can be useful to modify the default timeout and poll interval values. This can be done as follows:
// Swift
// Increase the global timeout to 5 seconds:
Nimble.AsyncDefaults.timeout = .seconds(5)
// Slow the polling interval to 0.1 seconds:
Nimble.AsyncDefaults.pollInterval = .milliseconds(100)
You can set these globally at test startup in two ways:
If you use Quick, add a QuickConfiguration
subclass which sets your desired AsyncDefaults
.
import Quick
import Nimble
class AsyncConfiguration: QuickConfiguration {
override class func configure(_ configuration: QCKConfiguration) {
Nimble.AsyncDefaults.timeout = .seconds(5)
Nimble.AsyncDefaults.pollInterval = .milliseconds(100)
}
}
If you use XCTest, add an object that conforms to XCTestObservation
and implement testBundleWillStart(_:)
.
Additionally, you will need to register this observer with the XCTestObservationCenter
at test startup. To do this, set the NSPrincipalClass
key in your test bundle's Info.plist and implement a class with that same name.
For example
<!-- Info.plist -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<!-- ... -->
<key>NSPrincipalClass</key>
<string>MyTests.TestSetup</string>
</dict>
</plist>
// TestSetup.swift
import XCTest
import Nimble
@objc
class TestSetup: NSObject {
override init() {
XCTestObservationCenter.shared.register(AsyncConfigurationTestObserver())
}
}
class AsyncConfigurationTestObserver: NSObject, XCTestObserver {
func testBundleWillStart(_ testBundle: Bundle) {
Nimble.AsyncDefaults.timeout = .seconds(5)
Nimble.AsyncDefaults.pollInterval = .milliseconds(100)
}
}
In Linux, you can implement LinuxMain
to set the AsyncDefaults before calling XCTMain
.
Nimble has full support for Objective-C. However, there are two things to keep in mind when using Nimble in Objective-C:
-
All parameters passed to the
expect
function, as well as matcher functions likeequal
, must be Objective-C objects or can be converted into anNSObject
equivalent:// Objective-C @import Nimble; expect(@(1 + 1)).to(equal(@2)); expect(@"Hello world").to(contain(@"world")); // Boxed as NSNumber * expect(2).to(equal(2)); expect(1.2).to(beLessThan(2.0)); expect(true).to(beTruthy()); // Boxed as NSString * expect("Hello world").to(equal("Hello world")); // Boxed as NSRange expect(NSMakeRange(1, 10)).to(equal(NSMakeRange(1, 10)));
-
To make an expectation on an expression that does not return a value, such as
-[NSException raise]
, useexpectAction
instead ofexpect
:// Objective-C expectAction(^{ [exception raise]; }).to(raiseException());
The following types are currently converted to an NSObject
type:
- C Numeric types are converted to
NSNumber *
NSRange
is converted toNSValue *
char *
is converted toNSString *
For the following matchers:
equal
beGreaterThan
beGreaterThanOrEqual
beLessThan
beLessThanOrEqual
beCloseTo
beTrue
beFalse
beTruthy
beFalsy
haveCount
If you would like to see more, file an issue.
Nimble provides a shorthand for expressing expectations using the
expect
function. To disable this shorthand in Objective-C, define the
NIMBLE_DISABLE_SHORT_SYNTAX
macro somewhere in your code before
importing Nimble:
#define NIMBLE_DISABLE_SHORT_SYNTAX 1
@import Nimble;
NMB_expect(^{ return seagull.squawk; }, __FILE__, __LINE__).to(NMB_equal(@"Squee!"));
Disabling the shorthand is useful if you're testing functions with names that conflict with Nimble functions, such as
expect
orequal
. If that's not the case, there's no point in disabling the shorthand.
Nimble includes a wide variety of matcher functions.
Nimble supports checking the type membership of any kind of object, whether Objective-C conformant or not:
// Swift
protocol SomeProtocol{}
class SomeClassConformingToProtocol: SomeProtocol{}
struct SomeStructConformingToProtocol: SomeProtocol{}
// The following tests pass
expect(1).to(beAKindOf(Int.self))
expect("turtle").to(beAKindOf(String.self))
let classObject = SomeClassConformingToProtocol()
expect(classObject).to(beAKindOf(SomeProtocol.self))
expect(classObject).to(beAKindOf(SomeClassConformingToProtocol.self))
expect(classObject).toNot(beAKindOf(SomeStructConformingToProtocol.self))
let structObject = SomeStructConformingToProtocol()
expect(structObject).to(beAKindOf(SomeProtocol.self))
expect(structObject).to(beAKindOf(SomeStructConformingToProtocol.self))
expect(structObject).toNot(beAKindOf(SomeClassConformingToProtocol.self))
// Objective-C
// The following tests pass
NSMutableArray *array = [NSMutableArray array];
expect(array).to(beAKindOf([NSArray class]));
expect(@1).toNot(beAKindOf([NSNull class]));
Objects can be tested for their exact types using the beAnInstanceOf
matcher:
// Swift
protocol SomeProtocol{}
class SomeClassConformingToProtocol: SomeProtocol{}
struct SomeStructConformingToProtocol: SomeProtocol{}
// Unlike the 'beKindOf' matcher, the 'beAnInstanceOf' matcher only
// passes if the object is the EXACT type requested. The following
// tests pass -- note its behavior when working in an inheritance hierarchy.
expect(1).to(beAnInstanceOf(Int.self))
expect("turtle").to(beAnInstanceOf(String.self))
let classObject = SomeClassConformingToProtocol()
expect(classObject).toNot(beAnInstanceOf(SomeProtocol.self))
expect(classObject).to(beAnInstanceOf(SomeClassConformingToProtocol.self))
expect(classObject).toNot(beAnInstanceOf(SomeStructConformingToProtocol.self))
let structObject = SomeStructConformingToProtocol()
expect(structObject).toNot(beAnInstanceOf(SomeProtocol.self))
expect(structObject).to(beAnInstanceOf(SomeStructConformingToProtocol.self))
expect(structObject).toNot(beAnInstanceOf(SomeClassConformingToProtocol.self))
// Swift
// Passes if 'actual' is equivalent to 'expected':
expect(actual).to(equal(expected))
expect(actual) == expected
// Passes if 'actual' is not equivalent to 'expected':
expect(actual).toNot(equal(expected))
expect(actual) != expected
// Objective-C
// Passes if 'actual' is equivalent to 'expected':
expect(actual).to(equal(expected))
// Passes if 'actual' is not equivalent to 'expected':
expect(actual).toNot(equal(expected))
Values must be Equatable
, Comparable
, or subclasses of NSObject
.
equal
will always fail when used to compare one or more nil
values.
// Swift
// Passes if 'actual' has the same pointer address as 'expected':
expect(actual).to(beIdenticalTo(expected))
expect(actual) === expected
// Passes if 'actual' does not have the same pointer address as 'expected':
expect(actual).toNot(beIdenticalTo(expected))
expect(actual) !== expected
It is important to remember that beIdenticalTo
only makes sense when comparing
types with reference semantics, which have a notion of identity. In Swift,
that means types that are defined as a class
.
This matcher will not work when comparing types with value semantics such as
those defined as a struct
or enum
. If you need to compare two value types,
consider what it means for instances of your type to be identical. This may mean
comparing individual properties or, if it makes sense to do so, conforming your type
to Equatable
and using Nimble's equivalence matchers instead.
// Objective-C
// Passes if 'actual' has the same pointer address as 'expected':
expect(actual).to(beIdenticalTo(expected));
// Passes if 'actual' does not have the same pointer address as 'expected':
expect(actual).toNot(beIdenticalTo(expected));
// Swift
expect(actual).to(beLessThan(expected))
expect(actual) < expected
expect(actual).to(beLessThanOrEqualTo(expected))
expect(actual) <= expected
expect(actual).to(beGreaterThan(expected))
expect(actual) > expected
expect(actual).to(beGreaterThanOrEqualTo(expected))
expect(actual) >= expected
// Objective-C
expect(actual).to(beLessThan(expected));
expect(actual).to(beLessThanOrEqualTo(expected));
expect(actual).to(beGreaterThan(expected));
expect(actual).to(beGreaterThanOrEqualTo(expected));
Values given to the comparison matchers above must implement
Comparable
.
Because of how computers represent floating point numbers, assertions
that two floating point numbers be equal will sometimes fail. To express
that two numbers should be close to one another within a certain margin
of error, use beCloseTo
:
// Swift
expect(actual).to(beCloseTo(expected, within: delta))
// Objective-C
expect(actual).to(beCloseTo(expected).within(delta));
For example, to assert that 10.01
is close to 10
, you can write:
// Swift
expect(10.01).to(beCloseTo(10, within: 0.1))
// Objective-C
expect(@(10.01)).to(beCloseTo(@10).within(0.1));
There is also an operator shortcut available in Swift:
// Swift
expect(actual) ≈ expected
expect(actual) ≈ (expected, delta)
(Type option+x to get ≈
on a U.S. keyboard)
The former version uses the default delta of 0.0001. Here is yet another way to do this:
// Swift
expect(actual) ≈ expected ± delta
expect(actual) == expected ± delta
(Type option+shift+= to get ±
on a U.S. keyboard)
If you are comparing arrays of floating point numbers, you'll find the following useful:
// Swift
expect([0.0, 2.0]) ≈ [0.0001, 2.0001]
expect([0.0, 2.0]).to(beCloseTo([0.1, 2.1], within: 0.1))
Values given to the
beCloseTo
matcher must conform toFloatingPoint
.
// Swift
// Passes if 'instance' is an instance of 'aClass':
expect(instance).to(beAnInstanceOf(aClass))
// Passes if 'instance' is an instance of 'aClass' or any of its subclasses:
expect(instance).to(beAKindOf(aClass))
// Objective-C
// Passes if 'instance' is an instance of 'aClass':
expect(instance).to(beAnInstanceOf(aClass));
// Passes if 'instance' is an instance of 'aClass' or any of its subclasses:
expect(instance).to(beAKindOf(aClass));
Instances must be Objective-C objects: subclasses of
NSObject
, or Swift objects bridged to Objective-C with the@objc
prefix.
For example, to assert that dolphin
is a kind of Mammal
:
// Swift
expect(dolphin).to(beAKindOf(Mammal))
// Objective-C
expect(dolphin).to(beAKindOf([Mammal class]));
beAnInstanceOf
uses the-[NSObject isMemberOfClass:]
method to test membership.beAKindOf
uses-[NSObject isKindOfClass:]
.
// Passes if 'actual' is not nil, true, or an object with a boolean value of true:
expect(actual).to(beTruthy())
// Passes if 'actual' is only true (not nil or an object conforming to Boolean true):
expect(actual).to(beTrue())
// Passes if 'actual' is nil, false, or an object with a boolean value of false:
expect(actual).to(beFalsy())
// Passes if 'actual' is only false (not nil or an object conforming to Boolean false):
expect(actual).to(beFalse())
// Passes if 'actual' is nil:
expect(actual).to(beNil())
// Objective-C
// Passes if 'actual' is not nil, true, or an object with a boolean value of true:
expect(actual).to(beTruthy());
// Passes if 'actual' is only true (not nil or an object conforming to Boolean true):
expect(actual).to(beTrue());
// Passes if 'actual' is nil, false, or an object with a boolean value of false:
expect(actual).to(beFalsy());
// Passes if 'actual' is only false (not nil or an object conforming to Boolean false):
expect(actual).to(beFalse());
// Passes if 'actual' is nil:
expect(actual).to(beNil());
If you're using Swift, you can use the throwAssertion
matcher to check if an assertion is thrown (e.g. fatalError()
). This is made possible by @mattgallagher's CwlPreconditionTesting library.
// Swift
// Passes if 'somethingThatThrows()' throws an assertion,
// such as by calling 'fatalError()' or if a precondition fails:
expect { try somethingThatThrows() }.to(throwAssertion())
expect { () -> Void in fatalError() }.to(throwAssertion())
expect { precondition(false) }.to(throwAssertion())
// Passes if throwing an NSError is not equal to throwing an assertion:
expect { throw NSError(domain: "test", code: 0, userInfo: nil) }.toNot(throwAssertion())
// Passes if the code after the precondition check is not run:
var reachedPoint1 = false
var reachedPoint2 = false
expect {
reachedPoint1 = true
precondition(false, "condition message")
reachedPoint2 = true
}.to(throwAssertion())
expect(reachedPoint1) == true
expect(reachedPoint2) == false
Notes:
- This feature is only available in Swift.
- The tvOS simulator is supported, but using a different mechanism, requiring you to turn off the
Debug executable
scheme setting for your tvOS scheme's Test configuration.
You can use the throwError
matcher to check if an error is thrown.
// Swift
// Passes if 'somethingThatThrows()' throws an 'Error':
expect { try somethingThatThrows() }.to(throwError())
// Passes if 'somethingThatThrows()' throws an error within a particular domain:
expect { try somethingThatThrows() }.to(throwError { (error: Error) in
expect(error._domain).to(equal(NSCocoaErrorDomain))
})
// Passes if 'somethingThatThrows()' throws a particular error enum case:
expect { try somethingThatThrows() }.to(throwError(NSCocoaError.PropertyListReadCorruptError))
// Passes if 'somethingThatThrows()' throws an error of a particular type:
expect { try somethingThatThrows() }.to(throwError(errorType: NimbleError.self))
When working directly with Error
values, using the matchError
matcher
allows you to perform certain checks on the error itself without having to
explicitly cast the error.
The matchError
matcher allows you to check whether or not the error:
- is the same type of error you are expecting.
- represents a particular error value that you are expecting.
This can be useful when using Result
or Promise
types, for example.
// Swift
let actual: Error = ...
// Passes if 'actual' represents any error value from the NimbleErrorEnum type:
expect(actual).to(matchError(NimbleErrorEnum.self))
// Passes if 'actual' represents the case 'timeout' from the NimbleErrorEnum type:
expect(actual).to(matchError(NimbleErrorEnum.timeout))
// Passes if 'actual' contains an NSError equal to the one provided:
expect(actual).to(matchError(NSError(domain: "err", code: 123, userInfo: nil)))
Note: This feature is only available in Swift.
// Swift
// Passes if 'actual', when evaluated, raises an exception:
expect(actual).to(raiseException())
// Passes if 'actual' raises an exception with the given name:
expect(actual).to(raiseException(named: name))
// Passes if 'actual' raises an exception with the given name and reason:
expect(actual).to(raiseException(named: name, reason: reason))
// Passes if 'actual' raises an exception which passes expectations defined in the given closure:
// (in this case, if the exception's name begins with "a r")
expect { exception.raise() }.to(raiseException { (exception: NSException) in
expect(exception.name).to(beginWith("a r"))
})
// Objective-C
// Passes if 'actual', when evaluated, raises an exception:
expect(actual).to(raiseException())
// Passes if 'actual' raises an exception with the given name
expect(actual).to(raiseException().named(name))
// Passes if 'actual' raises an exception with the given name and reason:
expect(actual).to(raiseException().named(name).reason(reason))
// Passes if 'actual' raises an exception and it passes expectations defined in the given block:
// (in this case, if name begins with "a r")
expect(actual).to(raiseException().satisfyingBlock(^(NSException *exception) {
expect(exception.name).to(beginWith(@"a r"));
}));
Note: Swift currently doesn't have exceptions (see #220). Only Objective-C code can raise exceptions that Nimble will catch.
// Swift
// Passes if all of the expected values are members of 'actual':
expect(actual).to(contain(expected...))
// Passes if 'actual' is empty (i.e. it contains no elements):
expect(actual).to(beEmpty())
// Objective-C
// Passes if expected is a member of 'actual':
expect(actual).to(contain(expected));
// Passes if 'actual' is empty (i.e. it contains no elements):
expect(actual).to(beEmpty());
In Swift
contain
takes any number of arguments. The expectation passes if all of them are members of the collection. In Objective-C,contain
only takes one argument for now.
For example, to assert that a list of sea creature names contains "dolphin" and "starfish":
// Swift
expect(["whale", "dolphin", "starfish"]).to(contain("dolphin", "starfish"))
// Objective-C
expect(@[@"whale", @"dolphin", @"starfish"]).to(contain(@"dolphin"));
expect(@[@"whale", @"dolphin", @"starfish"]).to(contain(@"starfish"));
contain
andbeEmpty
expect collections to be instances ofNSArray
,NSSet
, or a Swift collection composed ofEquatable
elements.
To test whether a set of elements is present at the beginning or end of
an ordered collection, use beginWith
and endWith
:
// Swift
// Passes if the elements in expected appear at the beginning of 'actual':
expect(actual).to(beginWith(expected...))
// Passes if the the elements in expected come at the end of 'actual':
expect(actual).to(endWith(expected...))
// Objective-C
// Passes if the elements in expected appear at the beginning of 'actual':
expect(actual).to(beginWith(expected));
// Passes if the the elements in expected come at the end of 'actual':
expect(actual).to(endWith(expected));
beginWith
andendWith
expect collections to be instances ofNSArray
, or ordered Swift collections composed ofEquatable
elements.
Like contain
, in Objective-C beginWith
and endWith
only support
a single argument for now.
For code that returns collections of complex objects without a strict
ordering, there is the containElementSatisfying
matcher:
// Swift
struct Turtle {
let color: String
}
let turtles: [Turtle] = functionThatReturnsSomeTurtlesInAnyOrder()
// This set of matchers passes regardless of whether the array is
// [{color: "blue"}, {color: "green"}] or [{color: "green"}, {color: "blue"}]:
expect(turtles).to(containElementSatisfying({ turtle in
return turtle.color == "green"
}))
expect(turtles).to(containElementSatisfying({ turtle in
return turtle.color == "blue"
}, "that is a turtle with color 'blue'"))
// The second matcher will incorporate the provided string in the error message
// should it fail
// Objective-C
@interface Turtle : NSObject
@property (nonatomic, readonly, nonnull) NSString *color;
@end
@implementation Turtle
@end
NSArray<Turtle *> * __nonnull turtles = functionThatReturnsSomeTurtlesInAnyOrder();
// This set of matchers passes regardless of whether the array is
// [{color: "blue"}, {color: "green"}] or [{color: "green"}, {color: "blue"}]:
expect(turtles).to(containElementSatisfying(^BOOL(id __nonnull object) {
return [[turtle color] isEqualToString:@"green"];
}));
expect(turtles).to(containElementSatisfying(^BOOL(id __nonnull object) {
return [[turtle color] isEqualToString:@"blue"];
}));
For asserting on if the given Comparable
value is inside of a Range
, use the beWithin
matcher.
// Swift
// Passes if 5 is within the range 1 through 10, inclusive
expect(5).to(beWithin(1...10))
// Passes if 5 is not within the range 2 through 4.
expect(5).toNot(beWithin(2..<5))
// Swift
// Passes if 'actual' contains 'substring':
expect(actual).to(contain(substring))
// Passes if 'actual' begins with 'prefix':
expect(actual).to(beginWith(prefix))
// Passes if 'actual' ends with 'suffix':
expect(actual).to(endWith(suffix))
// Passes if 'actual' represents the empty string, "":
expect(actual).to(beEmpty())
// Passes if 'actual' matches the regular expression defined in 'expected':
expect(actual).to(match(expected))
// Objective-C
// Passes if 'actual' contains 'substring':
expect(actual).to(contain(expected));
// Passes if 'actual' begins with 'prefix':
expect(actual).to(beginWith(prefix));
// Passes if 'actual' ends with 'suffix':
expect(actual).to(endWith(suffix));
// Passes if 'actual' represents the empty string, "":
expect(actual).to(beEmpty());
// Passes if 'actual' matches the regular expression defined in 'expected':
expect(actual).to(match(expected))
Nimble provides a means to check that all elements of a collection pass a given expectation.
In Swift, the collection must be an instance of a type conforming to
Sequence
.
// Swift
// Providing a custom function:
expect([1, 2, 3, 4]).to(allPass { $0 < 5 })
// Composing the expectation with another matcher:
expect([1, 2, 3, 4]).to(allPass(beLessThan(5)))
In Objective-C, the collection must be an instance of a type which implements
the NSFastEnumeration
protocol, and whose elements are instances of a type
which subclasses NSObject
.
Additionally, unlike in Swift, there is no override to specify a custom matcher function.
// Objective-C
expect(@[@1, @2, @3, @4]).to(allPass(beLessThan(@5)));
// Swift
// Passes if 'actual' contains the 'expected' number of elements:
expect(actual).to(haveCount(expected))
// Passes if 'actual' does _not_ contain the 'expected' number of elements:
expect(actual).notTo(haveCount(expected))
// Objective-C
// Passes if 'actual' contains the 'expected' number of elements:
expect(actual).to(haveCount(expected))
// Passes if 'actual' does _not_ contain the 'expected' number of elements:
expect(actual).notTo(haveCount(expected))
For Swift, the actual value must be an instance of a type conforming to Collection
.
For example, instances of Array
, Dictionary
, or Set
.
For Objective-C, the actual value must be one of the following classes, or their subclasses:
NSArray
,NSDictionary
,NSSet
, orNSHashTable
.
// Swift
let testNotification = Notification(name: Notification.Name("Foo"), object: nil)
// Passes if the closure in expect { ... } posts a notification to the default
// notification center.
expect {
NotificationCenter.default.post(testNotification)
}.to(postNotifications(equal([testNotification])))
// Passes if the closure in expect { ... } posts a notification to a given
// notification center
let notificationCenter = NotificationCenter()
expect {
notificationCenter.post(testNotification)
}.to(postNotifications(equal([testNotification]), from: notificationCenter))
// Passes if the closure in expect { ... } posts a notification with the provided names to a given
// notification center. Make sure to use this when running tests on Catalina,
// using DistributedNotificationCenter as there is currently no way
// of observing notifications without providing specific names.
let distributedNotificationCenter = DistributedNotificationCenter()
expect {
distributedNotificationCenter.post(testNotification)
}.toEventually(postDistributedNotifications(equal([testNotification]),
from: distributedNotificationCenter,
names: [testNotification.name]))
This matcher is only available in Swift.
// Swift
let aResult: Result<String, Error> = .success("Hooray")
// passes if result is .success
expect(aResult).to(beSuccess())
// passes if result value is .success and validates Success value
expect(aResult).to(beSuccess { value in
expect(value).to(equal("Hooray"))
})
enum AnError: Error {
case somethingHappened
}
let otherResult: Result<String, AnError> = .failure(.somethingHappened)
// passes if result is .failure
expect(otherResult).to(beFailure())
// passes if result value is .failure and validates error
expect(otherResult).to(beFailure { error in
expect(error).to(matchError(AnError.somethingHappened))
})
This matcher is only available in Swift.
// Swift
// passes if actual is either less than 10 or greater than 20
expect(actual).to(satisfyAnyOf(beLessThan(10), beGreaterThan(20)))
// can include any number of matchers -- the following will pass
// **be careful** -- too many matchers can be the sign of an unfocused test
expect(6).to(satisfyAnyOf(equal(2), equal(3), equal(4), equal(5), equal(6), equal(7)))
// in Swift you also have the option to use the || operator to achieve a similar function
expect(82).to(beLessThan(50) || beGreaterThan(80))
// Objective-C
// passes if actual is either less than 10 or greater than 20
expect(actual).to(satisfyAnyOf(beLessThan(@10), beGreaterThan(@20)))
// can include any number of matchers -- the following will pass
// **be careful** -- too many matchers can be the sign of an unfocused test
expect(@6).to(satisfyAnyOf(equal(@2), equal(@3), equal(@4), equal(@5), equal(@6), equal(@7)))
Note: This matcher allows you to chain any number of matchers together. This provides flexibility, but if you find yourself chaining many matchers together in one test, consider whether you could instead refactor that single test into multiple, more precisely focused tests for better coverage.
// Swift
// passes if .succeeded is returned from the closure
expect {
guard case .enumCaseWithAssociatedValueThatIDontCareAbout = actual else {
return .failed(reason: "wrong enum case")
}
return .succeeded
}.to(succeed())
// passes if .failed is returned from the closure
expect {
guard case .enumCaseWithAssociatedValueThatIDontCareAbout = actual else {
return .failed(reason: "wrong enum case")
}
return .succeeded
}.notTo(succeed())
The String
provided with .failed()
is shown when the test fails.
When using toEventually()
be careful not to make state changes or run process intensive code since this closure will be ran many times.
In Nimble, matchers are Swift functions that take an expected
value and return a Predicate
closure. Take equal
, for example:
// Swift
public func equal<T: Equatable>(expectedValue: T?) -> Predicate<T> {
// Can be shortened to:
// Predicate { actual in ... }
//
// But shown with types here for clarity.
return Predicate { (actualExpression: Expression<T>) throws -> PredicateResult in
let msg = ExpectationMessage.expectedActualValueTo("equal <\(expectedValue)>")
if let actualValue = try actualExpression.evaluate() {
return PredicateResult(
bool: actualValue == expectedValue!,
message: msg
)
} else {
return PredicateResult(
status: .fail,
message: msg.appendedBeNilHint()
)
}
}
}
The return value of a Predicate
closure is a PredicateResult
that indicates
whether the actual value matches the expectation and what error message to
display on failure.
The actual
equal
matcher function does not match whenexpected
are nil; the example above has been edited for brevity.
Since matchers are just Swift functions, you can define them anywhere: at the top of your test file, in a file shared by all of your tests, or in an Xcode project you distribute to others.
If you write a matcher you think everyone can use, consider adding it to Nimble's built-in set of matchers by sending a pull request! Or distribute it yourself via GitHub.
For examples of how to write your own matchers, just check out the
Matchers
directory
to see how Nimble's built-in set of matchers are implemented. You can
also check out the tips below.
PredicateResult
is the return struct that Predicate
return to indicate
success and failure. A PredicateResult
is made up of two values:
PredicateStatus
and ExpectationMessage
.
Instead of a boolean, PredicateStatus
captures a trinary set of values:
// Swift
public enum PredicateStatus {
// The predicate "passes" with the given expression
// eg - expect(1).to(equal(1))
case matches
// The predicate "fails" with the given expression
// eg - expect(1).toNot(equal(1))
case doesNotMatch
// The predicate never "passes" with the given expression, even if negated
// eg - expect(nil as Int?).toNot(equal(1))
case fail
// ...
}
Meanwhile, ExpectationMessage
provides messaging semantics for error reporting.
// Swift
public indirect enum ExpectationMessage {
// Emits standard error message:
// eg - "expected to <string>, got <actual>"
case expectedActualValueTo(/* message: */ String)
// Allows any free-form message
// eg - "<string>"
case fail(/* message: */ String)
// ...
}
Predicates should usually depend on either .expectedActualValueTo(..)
or
.fail(..)
when reporting errors. Special cases can be used for the other enum
cases.
Finally, if your Predicate utilizes other Predicates, you can utilize
.appended(details:)
and .appended(message:)
methods to annotate an existing
error with more details.
A common message to append is failing on nils. For that, .appendedBeNilHint()
can be used.
actualExpression
is a lazy, memoized closure around the value provided to the
expect
function. The expression can either be a closure or a value directly
passed to expect(...)
. In order to determine whether that value matches,
custom matchers should call actualExpression.evaluate()
:
// Swift
public func beNil<T>() -> Predicate<T> {
// Predicate.simpleNilable(..) automatically generates ExpectationMessage for
// us based on the string we provide to it. Also, the 'Nilable' postfix indicates
// that this Predicate supports matching against nil actualExpressions, instead of
// always resulting in a PredicateStatus.fail result -- which is true for
// Predicate.simple(..)
return Predicate.simpleNilable("be nil") { actualExpression in
let actualValue = try actualExpression.evaluate()
return PredicateStatus(bool: actualValue == nil)
}
}
In the above example, actualExpression
is not nil
-- it is a closure
that returns a value. The value it returns, which is accessed via the
evaluate()
method, may be nil
. If that value is nil
, the beNil
matcher function returns true
, indicating that the expectation passed.
Using Swift's generics, matchers can constrain the type of the actual value
passed to the expect
function by modifying the return type.
For example, the following matcher, haveDescription
, only accepts actual
values that implement the Printable
protocol. It checks their description
against the one provided to the matcher function, and passes if they are the same:
// Swift
public func haveDescription(description: String) -> Predicate<Printable?> {
return Predicate.simple("have description") { actual in
return PredicateStatus(bool: actual.evaluate().description == description)
}
}
When using Predicate.simple(..)
or Predicate.simpleNilable(..)
, Nimble
outputs the following failure message when an expectation fails:
// where `message` is the first string argument and
// `actual` is the actual value received in `expect(..)`
"expected to \(message), got <\(actual)>"
You can customize this message by modifying the way you create a Predicate
.
For slightly more complex error messaging, receive the created failure message
with Predicate.define(..)
:
// Swift
public func equal<T: Equatable>(_ expectedValue: T?) -> Predicate<T> {
return Predicate.define("equal <\(stringify(expectedValue))>") { actualExpression, msg in
let actualValue = try actualExpression.evaluate()
let matches = actualValue == expectedValue && expectedValue != nil
if expectedValue == nil || actualValue == nil {
if expectedValue == nil && actualValue != nil {
return PredicateResult(
status: .fail,
message: msg.appendedBeNilHint()
)
}
return PredicateResult(status: .fail, message: msg)
}
return PredicateResult(bool: matches, message: msg)
}
}
In the example above, msg
is defined based on the string given to
Predicate.define
. The code looks akin to:
// Swift
let msg = ExpectationMessage.expectedActualValueTo("equal <\(stringify(expectedValue))>")
To fully customize the behavior of the Predicate, use the overload that expects
a PredicateResult
to be returned.
Along with PredicateResult
, there are other ExpectationMessage
enum values you can use:
public indirect enum ExpectationMessage {
// Emits standard error message:
// eg - "expected to <message>, got <actual>"
case expectedActualValueTo(/* message: */ String)
// Allows any free-form message
// eg - "<message>"
case fail(/* message: */ String)
// Emits standard error message with a custom actual value instead of the default.
// eg - "expected to <message>, got <actual>"
case expectedCustomValueTo(/* message: */ String, /* actual: */ String)
// Emits standard error message without mentioning the actual value
// eg - "expected to <message>"
case expectedTo(/* message: */ String)
// ...
}
For matchers that compose other matchers, there are a handful of helper functions to annotate messages.
appended(message: String)
is used to append to the original failure message:
// produces "expected to be true, got <actual> (use beFalse() for inverse)"
// appended message do show up inline in Xcode.
.expectedActualValueTo("be true").appended(message: " (use beFalse() for inverse)")
For a more comprehensive message that spans multiple lines, use
appended(details: String)
instead:
// produces "expected to be true, got <actual>\n\nuse beFalse() for inverse\nor use beNil()"
// details do not show inline in Xcode, but do show up in test logs.
.expectedActualValueTo("be true").appended(details: "use beFalse() for inverse\nor use beNil()")
To use a custom matcher written in Swift from Objective-C, you'll have
to extend the NMBPredicate
class, adding a new class method for your
custom matcher. The example below defines the class method
+[NMBPredicate beNilMatcher]
:
// Swift
extension NMBPredicate {
@objc public class func beNilMatcher() -> NMBPredicate {
return NMBPredicate { actualExpression in
return try beNil().satisfies(actualExpression).toObjectiveC()
}
}
}
The above allows you to use the matcher from Objective-C:
// Objective-C
expect(actual).to([NMBPredicate beNilMatcher]());
To make the syntax easier to use, define a C function that calls the class method:
// Objective-C
FOUNDATION_EXPORT NMBPredicate *beNil() {
return [NMBPredicate beNilMatcher];
}
When supporting Objective-C, make sure you handle nil
appropriately.
Like Cedar,
most matchers do not match with nil. This is to bring prevent test
writers from being surprised by nil
values where they did not expect
them.
Nimble provides the beNil
matcher function for test writer that want
to make expectations on nil
objects:
// Objective-C
expect(nil).to(equal(nil)); // fails
expect(nil).to(beNil()); // passes
If your matcher does not want to match with nil, you use Predicate.define
or Predicate.simple
.
Using those factory methods will automatically generate expected value failure messages when they're nil.
public func beginWith<S: Sequence>(_ startingElement: S.Element) -> Predicate<S> where S.Element: Equatable {
return Predicate.simple("begin with <\(startingElement)>") { actualExpression in
guard let actualValue = try actualExpression.evaluate() else { return .fail }
var actualGenerator = actualValue.makeIterator()
return PredicateStatus(bool: actualGenerator.next() == startingElement)
}
}
extension NMBPredicate {
@objc public class func beginWithMatcher(_ expected: Any) -> NMBPredicate {
return NMBPredicate { actualExpression in
let actual = try actualExpression.evaluate()
let expr = actualExpression.cast { $0 as? NMBOrderedCollection }
return try beginWith(expected).satisfies(expr).toObjectiveC()
}
}
}
Previously (<7.0.0
), Nimble supported matchers via the following types:
Matcher
NonNilMatcherFunc
MatcherFunc
All of those types have been replaced by Predicate
. The old API has been
removed completely in Nimble v10.
Nimble can be used on its own, or in conjunction with its sister project, Quick. To install both Quick and Nimble, follow the installation instructions in the Quick Documentation.
Nimble can currently be installed in one of two ways: using CocoaPods, or with git submodules.
To use Nimble as a submodule to test your macOS, iOS or tvOS applications, follow these 4 easy steps:
- Clone the Nimble repository
- Add Nimble.xcodeproj to the Xcode workspace for your project
- Link Nimble.framework to your test target
- Start writing expectations!
For more detailed instructions on each of these steps, read How to Install Quick. Ignore the steps involving adding Quick to your project in order to install just Nimble.
To use Nimble in CocoaPods to test your macOS, iOS or tvOS applications, add
Nimble to your podfile and add the use_frameworks!
line to enable Swift
support for CocoaPods.
platform :ios, '8.0'
source 'https://github.com/CocoaPods/Specs.git'
# Whatever pods you need for your app go here
target 'YOUR_APP_NAME_HERE_Tests', :exclusive => true do
use_frameworks!
pod 'Nimble'
end
Finally run pod install
.
Nimble is integrated with XCTest to allow it work well when used in Xcode test bundles, however it can also be used in a standalone app. After installing Nimble using one of the above methods, there are two additional steps required to make this work.
- Create a custom assertion handler and assign an instance of it to the
global
NimbleAssertionHandler
variable. For example:
class MyAssertionHandler : AssertionHandler {
func assert(assertion: Bool, message: FailureMessage, location: SourceLocation) {
if (!assertion) {
print("Expectation failed: \(message.stringValue)")
}
}
}
// Somewhere before you use any assertions
NimbleAssertionHandler = MyAssertionHandler()
- Add a post-build action to fix an issue with the Swift XCTest support library being unnecessarily copied into your app
- Edit your scheme in Xcode, and navigate to Build -> Post-actions
- Click the "+" icon and select "New Run Script Action"
- Open the "Provide build settings from" dropdown and select your target
- Enter the following script contents:
rm "${SWIFT_STDLIB_TOOL_DESTINATION_DIR}/libswiftXCTest.dylib"
You can now use Nimble assertions in your code and handle failures as you see fit.