Demo is hosted on https://ltdemos.informatik.uni-hamburg.de/dblplink.
Download pre-trained models from http://ltdata1.informatik.uni-hamburg.de/debayan-dblplink/ and untar them in api/
.
docker compose build
docker compose up
At the moment, the Elasticsearch dump for the KG embeddings exceeds 100 GB in size, hence we do not upload it in public. Kindly contact us if you wish to receive the dumps individually.
cd extras/
python -u train.py --model_name t5-small --batch_size 4 --epochs 10 --lr 0.001
cd extras/
python -u evaluate.py --model_name t5-base --embedding_name transe
cd reranker/
python siamese.py data_distmult/train.jsonlines data_distmult/valid.jsonlines output_model_dir/
streamlit run Home.py staging
OR
streamlit run Home.py production
@inproceedings{10.1145/3448016.3457280,
author = {Banerjee, Debayan and , Arefa and Usbeck, Ricardo and Biemann, Chris},
title = {DBLPLink: An Entity Linker for the DBLP Scholarly Knowledge Graph},
year = {2023},
booktitle = {The Semantic Web – ISWC 2023: 22nd International Semantic Web Conference, Athens, Greece, November 6–10, 2023, Proceedings},
location = {Athens, Greece}
}